ICDP workshop on the Deep Drilling in the Turkana Basin project: exploring the link between environmental factors and hominin evolution over the past 4 Myr

Author:

Beck Catherine C.ORCID,Berke MelissaORCID,Feibel Craig S.,Foerster VerenaORCID,Olaka Lydia,Roberts Helen M.,Scholz Christopher A.,Cantner Kat,Noren AndersORCID,Kiptoo Geoffery MibeiORCID,Muirhead James,

Abstract

Abstract. Scientific drill cores provide unique windows into the processes of the past and present. In the dynamic tectonic, environmental, climatic, and ecological setting that is eastern Africa, records recovered through scientific drilling enable us to look at change through time in unprecedented ways. Cores from the East African Rift System can provide valuable information about the context in which hominins have evolved in one of the key regions of hominin evolution over the past 4 Myr. The Deep Drilling in the Turkana Basin (DDTB) project seeks to explore the impact of several types of evolution (tectonic, climatic, biological) on ecosystems and environments. This includes addressing questions regarding the region's complex and interrelated rifting and magmatic history, as well as understanding processes of sedimentation and associated hydrothermal systems within the East African Rift System. We seek to determine the relative impacts of tectonic and climatic evolution on eastern African ecosystems. We ask the follow questions: what role (if any) did climate change play in the evolution of hominins? How can our understanding of past environmental change guide our planning for a future shaped by anthropogenic climate change? To organize the scientific community's goals for deep coring in the Turkana Basin, we hosted a 4 d ICDP supported workshop in Nairobi, Kenya, in July 2022. The team focused on how a 4 Myr sedimentary core from the Turkana Basin will uniquely address key scientific research objectives related to basin evolution, paleoclimate, paleoenvironment, and modern resources. Participants also discussed how DDTB could collaborate with community partners in the Turkana Basin, particularly around the themes of access to water and education. The team concluded that collecting the proposed Pliocene to modern record is best accomplished through a two-phase drilling project with a land-based transect of four cores spanning the interval from 4 Ma to the Middle–Late Pleistocene (< 0.7 Ma) and a lake-based core targeting the interval from ∼ 1 Ma to present. The second phase, while logistically more challenging due to the lack of drilling infrastructure currently on Lake Turkana, would revolutionize our understanding of a significant interval in the evolution and migration of Homo sapiens for a time period not currently accessible from the Kenyan part of the Turkana Basin. Collectively, the DDTB project will provide exceptional tectonic and climatic data directly associated with one of the world's richest hominin fossil localities.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Reference114 articles.

1. Albino, F., Pinel, V., and Sigmundsson, F.: Influence of surface load variations on eruption likelihood: application to two Icelandic subglacial volcanoes, Grímsvötn and Katla, Geophys. J. Int., 181, 1510–1524, https://doi.org/10.1111/j.1365-246X.2010.04603.x, 2010.​​​​​​​

2. Avery, S.: Hydrological impacts of Ethiopia's Omo Basin on Kenya's Lake Turkana water levels &amp; fisheries, African Development Bank Group, https://www.afdb.org/fileadmin/uploads/afdb/Documents/Compliance-Review/REPORT_NOV_2010_S_AVERY_TURKANA_Small_file.pdf (last access: 5 December 2023), 2010.

3. Avery, S. and Eng, C.: Lake Turkana &amp; the Lower Omo: hydrological impacts of major dam and irrigation developments, African Studies Centre, the University of Oxford, 2012.

4. Baker, B. H. and Wohlenberg, J.: Structure and evolution of the Kenya rift valley, Nature, 229, 538–542, https://doi.org/10.1038/229538a0, 1971.

5. Bayley, P. B.: The Commercial Fishery of Lake Turkana, in: Report on the Findings of the Lake Turkana Project, 1972–75, edited by: Hopson, A. J., 2, 351–554, 1982.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3