Short- and medium-term atmospheric constituent effects of very large solar proton events

Author:

Jackman C. H.,Marsh D. R.,Vitt F. M.,Garcia R. R.,Fleming E. L.,Labow G. J.,Randall C. E.,López-Puertas M.,Funke B.,von Clarmann T.,Stiller G. P.

Abstract

Abstract. Solar eruptions sometimes produce protons, which impact the Earth's atmosphere. These solar proton events (SPEs) generally last a few days and produce high energy particles that precipitate into the Earth's atmosphere. The protons cause ionization and dissociation processes that ultimately lead to an enhancement of odd-hydrogen and odd-nitrogen in the polar cap regions (>60° geomagnetic latitude). We have used the Whole Atmosphere Community Climate Model (WACCM3) to study the atmospheric impact of SPEs over the period 1963–2005. The very largest SPEs were found to be the most important and caused atmospheric effects that lasted several months after the events. We present the short- and medium-term (days to a few months) atmospheric influence of the four largest SPEs in the past 45 years (August 1972; October 1989; July 2000; and October–November 2003) as computed by WACCM3 and observed by satellite instruments. Polar mesospheric NOx (NO+NO2) increased by over 50 ppbv and mesospheric ozone decreased by over 30% during these very large SPEs. Changes in HNO3, N2O5, ClONO2, HOCl, and ClO were indirectly caused by the very large SPEs in October–November 2003, were simulated by WACCM3, and previously measured by Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). WACCM3 output was also represented by sampling with the MIPAS averaging kernel for a more valid comparison. Although qualitatively similar, there are discrepancies between the model and measurement with WACCM3 predicted HNO3 and ClONO2 enhancements being smaller than measured and N2O5 enhancements being larger than measured. The HOCl enhancements were fairly similar in amounts and temporal variation in WACCM3 and MIPAS. WACCM3 simulated ClO decreases below 50 km, whereas MIPAS mainly observed increases, a very perplexing difference. Upper stratospheric and lower mesospheric NOx increased by over 10 ppbv and was transported during polar night down to the middle stratosphere in several weeks past the SPE. The WACCM3 simulations confirmed the SH HALOE observations of enhanced NOx in September 2000 as a result of the July 2000 SPE and the NH SAGE II observations of enhanced NO2 in March 1990 as a result of the October 1989 SPEs.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference73 articles.

1. Armstrong, T. P., Brundardt, C., and Meyer, J. E.: Satellite observations of interplanetary and polar cap solar particle fluxes from 1963 to the present, in: Weather and Climate Response to Solar Variations, edited by: McCormac, B. M., Colorado Associated University Press, Boulder, 71–79, 1983.

2. Banks, P. M.: Joule heating in the high-latitude mesosphere, J. Geophys. Res., 84, 6709–6712, 1979.

3. Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere, D Reidel Publising Company, Dordrecht, Holland, p. 245, 1984.

4. Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., Briegleb, B., Bitz, C., Lin, S.-J., Zhang, M., and Dai, Y.: Description of the NCAR Community Atmosphere Model (CAM3), NCAR Technical Note, NCAR/TN-464+STR, 226 pp., 2004.

5. Crutzen, P. J., Isaksen, I. S. A., and Reid, G. C.: Solar proton events: Stratospheric sources of nitric oxide, Science, 189, 457–458, 1975.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3