Time‐Dependent Inversion of Energetic Electron Precipitation Spectra From Ground‐Based Incoherent Scatter Radar Measurements

Author:

Juarez Madera Diana1ORCID,Marshall Robert A.2ORCID,Elschot Sigrid1,Kaeppler Stephen3ORCID,Reyes Pablo4ORCID,Varney Roger H.5ORCID,Crew Alexander B.6

Affiliation:

1. Aeronautics and Astronautics Stanford University Stanford CA USA

2. Aerospace Engineering Sciences University of Colorado Boulder Boulder CO USA

3. Physics and Astronomy Clemson University Clemson SC USA

4. SRI International Menlo Park CA USA

5. Atmospheric and Oceanic Sciences University of California Los Angeles Los Angeles CA USA

6. Johns Hopkins University Applied Physics Laboratory Laurel MD USA

Abstract

AbstractIn the D‐region, the ionization rate cannot be detected directly with any known measurement technique, therefore it must be estimated. Starting from space‐based measurements of precipitating particle flux, we estimate the ionization rate in the atmosphere using the Electron Precipitation Monte Carlo transport method. This ionization rate is used to calculate the expected electron density in the D‐region with the Glukhov‐Pasko‐Inan five species (GPI5) atmospheric chemistry model. We then compare the simulated electron density with that measured by the Poker Flat Incoherent Scatter Radar (PFISR). From ground‐based radar measurements of electron density enhancements due to sub‐relativistic and relativistic electron precipitation, we present a method to extract the ionization rate altitude profiles using inverse theory. We use this estimation of ionization rate to find the energy distribution of the precipitating particles. With this inverse method, we are able to link ground measurements of electron density to the precipitating flux in a time dependent manner and with uncertainty in the inverted parameters. The method was tested on synthetic data and applied to specific PFISR data sets. The method is able to retrieve the ionization rate altitude profiles that, when forward modeled, return the expected electron densities within ∼7% error as compared to the PFISR data. For the case presented here, the arbitrary energy distribution inversion results are comparable in magnitude and shape to those presented in Turunen et al. (2016, https://doi.org/10.1002/2016jd025015) for the inversion of a single event of pulsating aurora observed by EISCAT.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3