Carbon balance of a grazed savanna grassland ecosystem in South Africa
-
Published:2017-03-07
Issue:5
Volume:14
Page:1039-1054
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Räsänen MattiORCID, Aurela MikaORCID, Vakkari Ville, Beukes Johan P., Tuovinen Juha-PekkaORCID, Van Zyl Pieter G.ORCID, Josipovic Miroslav, Venter Andrew D., Jaars Kerneels, Siebert Stefan J., Laurila TuomasORCID, Rinne JanneORCID, Laakso Lauri
Abstract
Abstract. Tropical savannas and grasslands are estimated to contribute significantly to the total primary production of all terrestrial vegetation. Large parts of African savannas and grasslands are used for agriculture and cattle grazing, but the carbon flux data available from these areas are limited. This study explores carbon dioxide fluxes measured with the eddy covariance method for 3 years at a grazed savanna grassland in Welgegund, South Africa. The tree cover around the measurement site, grazed by cattle and sheep, was around 15 %. The night-time respiration was not significantly dependent on either soil moisture or soil temperature on a weekly temporal scale, whereas on an annual timescale higher respiration rates were observed when soil temperatures were higher. The carbon dioxide balances of the years 2010–2011, 2011–2012 and 2012–2013 were −85 ± 16, 67 ± 20 and 139 ± 13 gC m−2 yr−1, respectively. The yearly variation was largely determined by the changes in the early wet season fluxes (September to November) and in the mid-growing season fluxes (December to January). Early rainfall enhanced the respiratory capacity of the ecosystem throughout the year, whereas during the mid-growing season high rainfall resulted in high carbon uptake.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference36 articles.
1. Ago, E. E., Agbossou, E. K., Galle, S., Cohard, J.-M., Heinesch, B., and Aubinet, M.: Long term observations of carbon dioxide exchange over cultivated savanna under a Sudanian climate in Benin (West Africa), Agr. Forest Meteorol., 197, 13–25, https://doi.org/10.1016/j.agrformet.2014.06.005, 2014. 2. Ahlström, A.: The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink, J. Geophys. Res.-Space, 120, 4503–4518, https://doi.org/10.1002/2015JA021022, 2015. 3. Archibald, S. and Scholes, R. J.: Leaf green-up in a semi-arid African savanna-separating tree and grass responses to environmental cues, J. Veg. Sci., 18, 583–594, 2007. 4. Archibald, S. A., Kirton, A., van der Merwe, M. R., Scholes, R. J., Williams, C. A., and Hanan, N.: Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa, Biogeosciences, 6, 251–266, https://doi.org/10.5194/bg-6-251-2009, 2009. 5. Aurela, M., Lohila, A., Tuovinen, J.-P., Hatakka, J., Riutta, T., and Laurila, T.: Carbon dioxide exchange on a northern boreal fen, Boreal Environ. Res., 14, 699–710, 2009.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|