Evaluation of Selected Sentinel‐2 Remotely Sensed Vegetation Indices and MODIS GPP in Representing Productivity in Semi‐Arid South African Ecosystems

Author:

Maluleke Amukelani1ORCID,Feig Gregor23ORCID,Brümmer Christian4ORCID,Rybchak Oksana4ORCID,Midgley Guy1ORCID

Affiliation:

1. Department of Botany and Zoology Stellenbosch University Stellenbosch South Africa

2. South African Environmental Observation Network Pretoria South Africa

3. Department of Geography, Geoinformatics and Meteorology University of Pretoria Pretoria South Africa

4. Thünen Institute of Climate‐Smart Agriculture Braunschweig Germany

Abstract

AbstractThe ability to validate satellite observations with ground‐based data sets is vital for the spatiotemporal assessment of productivity trends in semi‐arid ecosystems. Modeling ecosystem scale parameters such as gross primary production (GPP) with the combination of satellite and ground‐based data however requires a comprehensive understanding of the associated drivers of how the carbon balance of these ecosystems is impacted under climate change. We used GPP estimates from the partitioning of net ecosystem measurements (net ecosystem exchange) from three Eddy Covariance (EC) flux tower sites and applied linear regressions to evaluate the ability of Sentinel‐2 vegetation indices (VIs) retrieved from Google Earth Engine to estimate GPP in semi‐arid ecosystems. The Sentinel‐2 normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and the land surface water index (LSWI) were each assessed separately, and also in combination with selected meteorological variables (incoming radiation, soil water content, air temperature, vapor pressure deficit) using a bi‐directional stepwise linear regression to test whether this can improve GPP estimates. The performance of the MOD17AH2 8‐day GPP was also tested across the sites. NDVI, EVI and LSWI were able to track the phase and amplitude patterns of EC estimated gross primary production (GPPEC) across all sites, albeit with phase delays observed especially at the Benfontein Savanna site (Ben_Sav). In all cases, the VI estimates improved with the addition of meteorological variables except for LSWI at Middleburg Karoo (Mid_Kar). The least improvement in R2 was observed in all EVI‐based estimates—indicating the suitability of EVI as a single VI to estimate GPP. Our results suggest that while productivity assessments using a single VI may be more favorable, the inclusion of meteorological variables can be applied to improve single VIs estimates to accurately detect and characterize changes in GPP. In addition, we found that standard MODIS products better represent the phase than amplitude of productivity in semi‐arid ecosystems, explaining between 68% and 83% of GPP variability.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3