Persistent La Niñas drive joint soybean harvest failures in North and South America

Author:

Hamed RaedORCID,Vijverberg SemORCID,Van Loon Anne F.ORCID,Aerts Jeroen,Coumou Dim

Abstract

Abstract. Around 80 % of global soybean supply is produced in southeast South America (SESA), central Brazil (CB) and the United States (US) alone. This concentration of production in few regions makes global soybean supply sensitive to spatially compounding harvest failures. Weather variability is a key driver of soybean variability, with soybeans being especially vulnerable to hot and dry conditions during the reproductive growth stage in summer. El Niño–Southern Oscillation (ENSO) teleconnections can influence summer weather conditions across the Americas, presenting potential risks for spatially compounding harvest failures. Here, we develop causal structural models to quantify the influence of ENSO on soybean yields via mediating variables like local weather conditions and extratropical sea surface temperatures (SSTs). We show that soybean yields are predominately driven by soil moisture conditions in summer, explaining ∼50 %, 18 % and 40 % of yield variability in SESA, CB and the US respectively. Summer soil moisture is strongly driven by spring soil moisture, as well as by remote extratropical SST patterns in both hemispheres. Both of these soil moisture drivers are again influenced by ENSO. Our causal models show that persistent negative ENSO anomalies of −1.5 standard deviation (SD) lead to a −0.4 SD soybean reduction in the US and SESA. When spring soil moisture and extratropical SST precursors are pronouncedly negative (−1.5 SD), then estimated soybean losses increase to −0.9 SD for the US and SESA. Thus, by influencing extratropical SSTs and spring soil moisture, persistent La Niñas can trigger substantial soybean losses in both the US and SESA, with only minor potential gains in CB. Our findings highlight the physical pathways by which ENSO conditions can drive spatially compounding events. Such information may increase preparedness against climate-related global soybean supply shocks.

Funder

Horizon 2020

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3