Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations

Author:

Huang GuanyuORCID,Liu Xiong,Chance KellyORCID,Yang KaiORCID,Bhartia Pawan K.,Cai Zhaonan,Allaart Marc,Ancellet GérardORCID,Calpini Bertrand,Coetzee Gerrie J. R.,Cuevas-Agulló EmilioORCID,Cupeiro Manuel,De Backer HugoORCID,Dubey Manvendra K.ORCID,Fuelberg Henry E.,Fujiwara MasatomoORCID,Godin-Beekmann Sophie,Hall Tristan J.,Johnson Bryan,Joseph Everette,Kivi RigelORCID,Kois Bogumil,Komala Ninong,König-Langlo Gert,Laneve GiovanniORCID,Leblanc Thierry,Marchand Marion,Minschwaner Kenneth R.,Morris GaryORCID,Newchurch Michael J.,Ogino Shin-Ya,Ohkawara Nozomu,Piters Ankie J. M.,Posny FrançoiseORCID,Querel RichardORCID,Scheele Rinus,Schmidlin Frank J.ORCID,Schnell Russell C.,Schrems Otto,Selkirk HenryORCID,Shiotani MasatoORCID,Skrivánková Pavla,Stübi René,Taha GhassanORCID,Tarasick David W.,Thompson Anne M.ORCID,Thouret Valérie,Tully Matthew B.ORCID,Van Malderen RoelandORCID,Vömel HolgerORCID,von der Gathen PeterORCID,Witte Jacquelyn C.ORCID,Yela Margarita

Abstract

Abstract. We validate the Ozone Monitoring Instrument (OMI) Ozone Profile (PROFOZ) product from October 2004 through December 2014 retrieved by the Smithsonian Astrophysical Observatory (SAO) algorithm against ozonesonde observations. We also evaluate the effects of OMI row anomaly (RA) on the retrieval by dividing the dataset into before and after the occurrence of serious OMI RA, i.e., pre-RA (2004–2008) and post-RA (2009–2014). The retrieval shows good agreement with ozonesondes in the tropics and midlatitudes and for pressure  < ∼ 50 hPa in the high latitudes. It demonstrates clear improvement over the a priori down to the lower troposphere in the tropics and down to an average of ∼ 550 (300) hPa at middle (high) latitudes. In the tropics and midlatitudes, the profile mean biases (MBs) are less than 6 %, and the standard deviations (SDs) range from 5 to 10 % for pressure  < ∼ 50 hPa to less than 18 % (27 %) in the tropics (midlatitudes) for pressure  > ∼ 50 hPa after applying OMI averaging kernels to ozonesonde data. The MBs of the stratospheric ozone column (SOC, the ozone column from the tropopause pressure to the ozonesonde burst pressure) are within 2 % with SDs of  < 5 % and the MBs of the tropospheric ozone column (TOC) are within 6 % with SDs of 15 %. In the high latitudes, the profile MBs are within 10 % with SDs of 5–15 % for pressure  < ∼ 50 hPa but increase to 30 % with SDs as great as 40 % for pressure  > ∼ 50 hPa. The SOC MBs increase up to 3 % with SDs as great as 6 % and the TOC SDs increase up to 30 %. The comparison generally degrades at larger solar zenith angles (SZA) due to weaker signals and additional sources of error, leading to worse performance at high latitudes and during the midlatitude winter. Agreement also degrades with increasing cloudiness for pressure  > ∼ 100 hPa and varies with cross-track position, especially with large MBs and SDs at extreme off-nadir positions. In the tropics and midlatitudes, the post-RA comparison is considerably worse with larger SDs reaching 2 % in the stratosphere and 8 % in the troposphere and up to 6 % in TOC. There are systematic differences that vary with latitude compared to the pre-RA comparison. The retrieval comparison demonstrates good long-term stability during the pre-RA period but exhibits a statistically significant trend of 0.14–0.7 % year−1 for pressure  < ∼ 80 hPa, 0.7 DU year−1 in SOC, and −0. 33 DU year−1 in TOC during the post-RA period. The spatiotemporal variation of retrieval performance suggests the need to improve OMI's radiometric calibration especially during the post-RA period to maintain the long-term stability and reduce the latitude/season/SZA and cross-track dependency of retrieval quality.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3