Ozone Profile Retrieval Algorithm Based on GEOS-Chem Model in the Middle and Upper Atmosphere

Author:

An Yuan123ORCID,Wang Xianhua123,Ye Hanhan13,Shi Hailiang123ORCID,Wu Shichao13,Li Chao123ORCID,Sun Erchang123

Affiliation:

1. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China

3. Key Laboratory of General Optical Calibration and Characterization Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

Abstract

Ozone absorbs ultraviolet radiation, which has a significant impact on research in astrobiology and other fields in that investigate the middle and upper atmosphere. A retrieval algorithm for ozone profiles in the middle and upper atmosphere was developed using the spectral data from the TROPOspheric Monitoring Instrument (TROPOMI). A priori ozone profiles were constructed through the Goddard Earth Observing System-Chem (GEOS-Chem) model. These profiles were closer to the true atmosphere in the spatial and temporal dimensions when compared to the ozone climatology. The TpO3 ozone climatology was used as a reference to highlight the reliability of the a priori ozone profile from GEOS-Chem. The inversion results based on GEOS-Chem and TpO3 climatology were compared with ground-based ozone measurements and the satellite products of the Microwave Limb Sounder (MLS) and the Ozone Mapping and Profiles Suite_Limb Profile (OMPS_LP). The comparisons reveal that the correlation coefficient R values for the inversion results based on GEOS-Chem were greater than 0.90 at most altitudes, making them better than the values based on TpO3 climatology. The differences in subcolumn concentration between the GEOS-Chem inversion results and the ground-based measurements were smaller than those between TpO3 climatology results and the ground-based measurements. The relative differences between the inversion results based on the GEOS-Chem and the satellite products was generally smaller than those between the inversion results based on TpO3 climatology and the satellite products. The mean relative difference between the GEOS-Chem inversion results and MLS is −9.10%, and OMPS_LP is 1.46%, while those based on TpO3 climatology is −14.51% and −4.70% from 20 to 45 km These results imply that using a priori ozone profiles generated through GEOS-Chem leads to more accurate inversion results.

Funder

National Key R&D Program of China

National Natural Science Foundation of China (NSFC) Young Scientist Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3