Coupling human and natural systems for sustainability: experience from China's Loess Plateau

Author:

Fu Bojie,Wu Xutong,Wang Zhuangzhuang,Wu Xilin,Wang Shuai

Abstract

Abstract. Addressing the sustainability challenges that humanity is facing in the Anthropocene requires the coupling of human and natural systems, rather than their separate treatment. To help understand the dynamics of a coupled human and natural system (CHANS) and support the design of policies and measures that promote sustainability, we propose a conceptual cascade framework of “pattern–process–service–sustainability”, which is characterized by coupling landscape patterns and ecological processes, linking ecological processes to ecosystem services, and promoting social–ecological sustainability. The use of this framework is illustrated by a review of CHANS research experience in China's Loess Plateau (LP), a well-known region for its historically severe soil erosion and successful ecological restoration achieved in recent decades. Ecological restoration in the LP has greatly increased its vegetation coverage and controlled its soil erosion. However, some accompanied issues, like soil drying in some areas due to the introduction of exotic plant species and the mismanagement of planted vegetation and water use conflicts between vegetation and humans caused by the trade-off between carbon sequestration and water supply, have started to threaten the long-term sustainability of the LP. Based on a comprehensive understanding of CHANS dynamics, the social–ecological sustainability of the LP can be improved through enhancing water and food security, implementing basin-wide governance, maintaining ecological restoration achievements, and promoting rural livelihood transition. The research experience accumulated on the LP offers examples of the application of the pattern–process–service–sustainability framework. Future research using this framework should especially focus on the integrated research of multiple processes; the cascades of ecosystem structure, function, services, and human well-being; the feedback mechanisms of human and natural systems; and the data and models for sustainability.

Funder

China Postdoctoral Science Foundation

National Postdoctoral Program for Innovative Talents

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3