Spatial–Temporal Variations in the Climate, Net Ecosystem Productivity, and Efficiency of Water and Carbon Use in the Middle Reaches of the Yellow River

Author:

Hou Xiao1,Zhang Bo1,He Qian-Qian1,Shao Zhuan-Ling1,Yu Hui1,Zhang Xue-Ying1

Affiliation:

1. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China

Abstract

An accurate assessment of the spatial–temporal variations in regional net ecosystem productivity (NEP), water use efficiency (WUE), and carbon use efficiency (CUE) are vital for understanding the water–carbon cycle. We analyzed the spatial–temporal patterns of the NEP, WUE, and CUE in the middle reaches of the Yellow River (MRYR) from 2001 to 2022, and the factors that influenced them using remote sensing data, NEP estimation models, and various statistical methods. The results indicate that the recovery of the ecosystem in the MRYR is a result of the combined effects of climate change and human activities. Climate change in the MRYR led to warming and humidification from 2001 to 2022. The NEP, WUE, and CUE were characterized by increasing trends, with average growth rates of 7.75 gC m−2a−1, 0.012 gC m−2 mm−1a−1, and 0.009a−1, respectively. For four vegetation types, the interannual rates of change were, in descending order, grassland, cropland, shrubs, and forest. Spatially, the NEP, WUE, and CUE showed significant regional heterogeneity, increasing from the northwest to the southeast. Based on an analysis of the interannual anomalies, precipitation accumulation contributed to carbon sink accumulation. The correlation of the NEP, WUE, and CUE with the drought severity index (DSI) was high, and their correlation with precipitation showed latitudinal zonality, which suggests that precipitation (PRE) is the main climatic factor influencing the water–carbon cycle in the MRYR rather than temperature (TEM). There were 67,671.27 km2 of land that changed use during 2001–2022, and 15.07 Tg of NEP was added to these areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3