Source and variability of formaldehyde (HCHO) at northern high latitudes: an integrated satellite, aircraft, and model study

Author:

Zhao Tianlang,Mao JingqiuORCID,Simpson William R.ORCID,De Smedt IsabelleORCID,Zhu LeiORCID,Hanisco Thomas F.ORCID,Wolfe Glenn M.ORCID,St. Clair Jason M.ORCID,González Abad GonzaloORCID,Nowlan Caroline R.ORCID,Barletta Barbara,Meinardi Simone,Blake Donald R.,Apel Eric C.,Hornbrook Rebecca S.ORCID

Abstract

Abstract. Here we use satellite observations of formaldehyde (HCHO) vertical column densities (VCD) from the TROPOspheric Monitoring Instrument (TROPOMI), aircraft measurements, combined with a nested regional chemical transport model (GEOS-Chem at 0.5×0.625∘ resolution), to better understand the variability and sources of summertime HCHO in Alaska. We first evaluate GEOS-Chem with in-situ airborne measurements during the Atmospheric Tomography Mission 1 (ATom-1) aircraft campaign. We show reasonable agreement between observed and modeled HCHO, isoprene, monoterpenes and the sum of methyl vinyl ketone and methacrolein (MVK+MACR) in the continental boundary layer. In particular, HCHO profiles show spatial homogeneity in Alaska, suggesting a minor contribution of biogenic emissions to HCHO VCD. We further examine the TROPOMI HCHO product in Alaska in summer, reprocessed by GEOS-Chem model output for a priori profiles and shape factors. For years with low wildfire activity (e.g., 2018), we find that HCHO VCDs are largely dominated by background HCHO (58 %–71 %), with minor contributions from wildfires (20 %–32 %) and biogenic VOC emissions (8 %–10 %). For years with intense wildfires (e.g., 2019), summertime HCHO VCD is dominated by wildfire emissions (50 %–72 %), with minor contributions from background (22 %–41 %) and biogenic VOCs (6 %–10 %). In particular, the model indicates a major contribution of wildfires from direct emissions of HCHO, instead of secondary production of HCHO from oxidation of larger VOCs. We find that the column contributed by biogenic VOC is often small and below the TROPOMI detection limit, in part due to the slow HCHO production from isoprene oxidation under low NOx conditions. This work highlights challenges for quantifying HCHO and its precursors in remote pristine regions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3