Unexpected long-range transport of glyoxal and formaldehyde observed from the Copernicus Sentinel-5 Precursor satellite during the 2018 Canadian wildfires
-
Published:2020-02-25
Issue:4
Volume:20
Page:2057-2072
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Alvarado Leonardo M. A.ORCID, Richter AndreasORCID, Vrekoussis MihalisORCID, Hilboll Andreas, Kalisz Hedegaard Anna B., Schneising OliverORCID, Burrows John P.ORCID
Abstract
Abstract. Glyoxal (CHOCHO) and formaldehyde (HCHO) are
intermediate products in the tropospheric oxidation of the majority of
volatile organic compounds (VOCs). CHOCHO is also a precursor of secondary
organic aerosol (SOA) in the atmosphere. CHOCHO and HCHO are released from
biogenic, anthropogenic, and pyrogenic sources. CHOCHO and HCHO
tropospheric lifetimes are typically considered to be short during the
daytime at mid-latitudes (e.g. several hours), as they are rapidly removed
from the atmosphere by their photolysis, oxidation by OH, and uptake on
particles or deposition. At night and at high latitudes, tropospheric
lifetimes increase to many hours or even days. Previous studies demonstrated
that CHOCHO and HCHO vertical column densities (VCDs) are well retrieved
from space-borne observations using differential optical absorption
spectroscopy (DOAS). In this study, we present CHOCHO and HCHO VCDs
retrieved from measurements by TROPOMI (TROPOspheric Monitoring Instrument), launched on the
Sentinel-5 Precursor (S5P) platform in October 2017. We observe strongly
elevated amounts of CHOCHO and HCHO during the 2018 fire season in British
Columbia, Canada, where a large number of fires occurred in August. CHOCHO
and HCHO plumes from individual fire hot spots are observed in air masses
travelling over distances of up to 1500 km, i.e. much longer than expected
for the relatively short tropospheric lifetime expected for CHOCHO and
HCHO. Comparison with simulations by the particle dispersion model FLEXPART
(FLEXible PARTicle dispersion model)
indicates that effective lifetimes of 20 h and more are needed to
explain the observations of CHOCHO and HCHO if they decay in an effective
first-order process. FLEXPART used in the study calculates accurately the
transport. In addition an exponential decay, in our case assumed to be
photochemical, of a species along the trajectory is added. We have used this
simple approach to test our assumption that CHOCHO and HCHO are created
in the fires and then decay at a constant rate in the plume as it is
transported. This is clearly not the case and we infer that CHOCHO and HCHO
are either efficiently recycled during transport or continuously formed
from the oxidation of longer-lived precursors present in the plume, or
possibly a mixture of both. We consider the best explanation of the observed
CHOCHO and HCHO VCD in the plumes of the fire is that they are produced by
oxidation of longer-lived precursors, which were also released by the fire and present
in the plume.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference69 articles.
1. Abbot, D. S., Palmer, P. I., Martin, R. V., Chance, K. V., Jacob, D. J., and
Guenther, A.: Seasonal and interannual variability of North American
isoprene emissions as determined by formaldehyde column measurements from
space, Geophys. Res. Lett., 30, 1886, https://doi.org/10.1029/2003GL017336, 2003. 2. Alvarado, L. M. A.: Investigating the role of glyoxal using satellite and
MAX-DOAS measurements, PhD, University of Bremen, Bremen, available at: http://nbn-resolving.de/urn:nbn:de:gbv:46-00105347-16 (last access: 28 August 2019), 2016. 3. Alvarado, L. M. A., Richter, A., Vrekoussis, M., Wittrock, F., Hilboll, A., Schreier, S. F., and Burrows, J. P.: An improved glyoxal retrieval from OMI measurements, Atmos. Meas. Tech., 7, 4133–4150, https://doi.org/10.5194/amt-7-4133-2014, 2014. 4. Alvarado, L. M. A., Richter, A., Vrekoussis, M., Wittrock, F., Hilboll, A.,
Schreier, S. F., and Burrows, J. P.: Investigating the Link Between Glyoxal
and Biogenic Activities, in: Towards an Interdisciplinary Approach in Earth
System Science, edited by: Lohmann, G., Meggers, H., Unnithan, V.,
Wolf-Gladrow, D., Notholt, J., and Bracher, A., pp. 59–65, Springer International
Publishing, Cham, Germany, https://doi.org/10.1007/978-3-319-13865-7_7, 2015. 5. Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos.
Environ., 34, 2063–2101, https://doi.org/10.1016/S1352-2310(99)00460-4,
2000.
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|