A framework for natural resource management with geospatial machine learning: a case study of the 2021 Almora forest fires

Author:

Tiwari ArpitORCID,Nanjundan Preethi,Kumar Ravi Ranjan,Soni Vijay Kumar

Abstract

Abstract Background Wildfires have a substantial impact on air quality and ecosystems by releasing greenhouse gases (GHGs), trace gases, and aerosols into the atmosphere. These wildfires produce both light-absorbing and merely scattering aerosols that can act as cloud condensation nuclei, altering cloud reflectivity, cloud lifetime, and precipitation frequency. Uttarakhand province in India experiences frequent wildfires that affect its protected ecosystems. Thus, a natural resource management system is needed in this region to assess the impact of wildfire hazards on land and atmosphere. We conducted an analysis of a severe fire event that occurred between January and April 2021 in the Kumaun region of Uttarakhand, by utilizing open-source geospatial data. Near-real-time satellite observations of pre- and post-fire conditions within the study area were used to detect changes in land and atmosphere. Supervised machine learning algorithm was also implemented to estimate burned above ground biomass (AGB) to monitor biomass stock. Results The study found that 21.75% of the total burned area burned with moderate to high severity, resulting in a decreased Soil Adjusted Vegetation Index value (> 0.3), a reduced Normalized Differential Moisture Index value (> 0.4), and a lowered Normalized Differential Vegetation Index (> 0.5). The AGB estimate demonstrated a significant simple determination (r2 = 0.001702) and probability (P < 2.2  10−16), along with a positive correlation (r ≤ 0.24) with vegetation and soil indices. The algorithm predicted that 17.56 tonnes of biomass per hectare burned in the Kumaun forests. This fire incident resulted in increased emissions of carbon dioxide (CO2; ~ 0.8  10−4 kg carbon h−1), methane (CH4; ~ 200  10−9 mol fraction in dry air), carbon monoxide (CO; 2000  1015 molecules cm−2 total column), and formaldehyde (HCHO; 3500  1013 molecules cm−2 total column), along with increased aerosol optical thickness (varying from 0.2 to 0.5). Conclusions We believe that our proposed operational framework for managing natural resources and assessing the impact of natural hazards can be used to efficiently monitor near-real-time forest-fire-caused changes in land and atmosphere. This method makes use of openly accessible geospatial data that can be employed for several objectives, including monitoring carbon stocks, greenhouse gas emissions, criterion air pollution, and radiative forcing of the climate, among many others. Our proposed framework will assist policymakers and the scientific community in mitigating climate change problems and in developing adaptation policies.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3