Stratigraphic noise and its potential drivers across the plateau of Dronning Maud Land, East Antarctica

Author:

Hirsch Nora,Zuhr AlexandraORCID,Münch ThomasORCID,Hörhold MariaORCID,Freitag JohannesORCID,Dallmayr Remi,Laepple ThomasORCID

Abstract

Abstract. Stable water isotopologues of snow, firn and ice cores provide valuable information on past climate variations. Yet single profiles are generally not suitable for robust climate reconstructions. Stratigraphic noise, introduced by the irregular deposition, wind-driven erosion and redistribution of snow, impacts the utility of high-resolution isotope records, especially in low-accumulation areas. However, it is currently unknown how stratigraphic noise differs across the East Antarctic Plateau and how it is affected by local environmental conditions. Here, we assess the amount and structure of stratigraphic noise at seven sites along a 120 km transect on the plateau of Dronning Maud Land, East Antarctica. Replicated oxygen isotope records of 1 m length were used to estimate signal-to-noise ratios as a measure of stratigraphic noise at sites characterised by different accumulation rates (43–64 mm w.e. a−1), snow surface roughnesses and slope inclinations. While we found a high level of stratigraphic noise at all sites, there was also considerable variation between sites. At sastrugi-dominated sites, greater stratigraphic noise coincided with stronger surface roughnesses, steeper slopes and lower accumulation rates, probably related to increased wind speeds. These results provide a first step to modelling stratigraphic noise and might guide site selection and sampling strategies for future expeditions to improve high-resolution climate reconstructions from low-accumulation regions.

Funder

H2020 European Research Council

Helmholtz-Fonds

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3