Young people's burden: requirement of negative CO<sub>2</sub> emissions

Author:

Hansen JamesORCID,Sato Makiko,Kharecha Pushker,von Schuckmann Karina,Beerling David J.,Cao Junji,Marcott Shaun,Masson-Delmotte ValerieORCID,Prather Michael J.ORCID,Rohling Eelco J.,Shakun Jeremy,Smith PeteORCID,Lacis Andrew,Russell GaryORCID,Ruedy Reto

Abstract

Abstract. Global temperature is a fundamental climate metric highly correlated with sea level, which implies that keeping shorelines near their present location requires keeping global temperature within or close to its preindustrial Holocene range. However, global temperature excluding short-term variability now exceeds +1 °C relative to the 1880–1920 mean and annual 2016 global temperature was almost +1.3 °C. We show that global temperature has risen well out of the Holocene range and Earth is now as warm as it was during the prior (Eemian) interglacial period, when sea level reached 6–9 m higher than today. Further, Earth is out of energy balance with present atmospheric composition, implying that more warming is in the pipeline, and we show that the growth rate of greenhouse gas climate forcing has accelerated markedly in the past decade. The rapidity of ice sheet and sea level response to global temperature is difficult to predict, but is dependent on the magnitude of warming. Targets for limiting global warming thus, at minimum, should aim to avoid leaving global temperature at Eemian or higher levels for centuries. Such targets now require negative emissions, i.e., extraction of CO2 from the air. If phasedown of fossil fuel emissions begins soon, improved agricultural and forestry practices, including reforestation and steps to improve soil fertility and increase its carbon content, may provide much of the necessary CO2 extraction. In that case, the magnitude and duration of global temperature excursion above the natural range of the current interglacial (Holocene) could be limited and irreversible climate impacts could be minimized. In contrast, continued high fossil fuel emissions today place a burden on young people to undertake massive technological CO2 extraction if they are to limit climate change and its consequences. Proposed methods of extraction such as bioenergy with carbon capture and storage (BECCS) or air capture of CO2 have minimal estimated costs of USD 89–535 trillion this century and also have large risks and uncertain feasibility. Continued high fossil fuel emissions unarguably sentences young people to either a massive, implausible cleanup or growing deleterious climate impacts or both.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference226 articles.

1. Abram, N. J., McGregor, H. V., Tierney, J. E., Evans, M. N., McKay, N. P., Kaufman, D. S., and PAGES 2k Consortium: Early onset of industrial-era warming across the oceans and continents, Nature, 536, 411–418, https://doi.org/10.1038/nature19082, 2016.

2. Ackerman, F. and Stanton, E. A.: Climate risks and carbon prices: revising the social cost of carbon, Economics E-J., 6, 1–25, 2012.

3. Aiken, A.: Opinion and Order, Case No. 6:15-cv-01517-TC in United States District Court, District of Oregon, Eugene Division, 54 pp., Judge Aiken's Opinion and Order is available at: http://www.columbia.edu/~jeh1/mailings/2016/20161111_EmphaticRulingbyJudgeAiken.pdf, last access: 10 November 2016.

4. Alec L v. Jackson DDC, No. 11-CV-02235, 12/14/11, United States District Court, District of Columbia, 31 May 2012.

5. Anderson, K.: Talks in the city of light generate more heat, Nature, 528, 437, 2015.

Cited by 195 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3