Impacts of climate and reclamation on temporal variations in CH<sub>4</sub> emissions from different wetlands in China: from 1950 to 2010
-
Published:2015-12-01
Issue:23
Volume:12
Page:6853-6868
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Li T., Zhang W.ORCID, Zhang Q., Lu Y., Wang G.ORCID, Niu Z., Raivonen M., Vesala T.
Abstract
Abstract. Natural wetlands are among the most important sources of atmospheric methane and thus important for better understanding the long-term temporal variations in the atmospheric methane concentration. During the last 60 years, wetlands have experienced extensive conversion and impacts from climate warming which might result in complicated temporal and spatial variations in the changes of the wetland methane emissions. In this paper, we present a modeling framework, integrating CH4MODwetland, TOPMODEL, and TEM models, to analyze the temporal and spatial variations in CH4 emissions from natural wetlands (including inland marshes/swamps, coastal wetlands, lakes, and rivers) in China. Our analysis revealed a total increase of 25.5 %, averaging 0.52 g m−2 per decade, in the national CH4 fluxes from 1950 to 2010, which was mainly induced by climate warming. Larger CH4 flux increases occurred in northeastern, northern, and northwestern China, where there have been higher temperature rises. However, decreases in precipitation due to climate warming offset the increment of CH4 fluxes in these regions. The CH4 fluxes from the wetland on the Qinghai–Tibet Plateau exhibited the lowest CH4 increase (0.17 g m−2 per decade). Although climate warming has accelerated CH4 fluxes, the total amount of national CH4 emissions decreased by approximately 2.35 Tg (1.91–2.81 Tg), i.e., from 4.50 Tg in the early 1950s to 2.15 Tg in the late 2000s, due to the wetland loss totalling 17.0 million ha. Of this reduction, 0.26 Tg (0.24–0.28 Tg) was derived from lakes and rivers, 0.16 Tg (0.13–0.20 Tg) from coastal wetlands, and 1.92 Tg (1.54–2.33 Tg) from inland wetlands. Spatially, northeastern China contributed the most to the total reduction, with a loss of 1.68 Tg. The wetland CH4 emissions reduced by more than half in most regions in China except for the Qinghai–Tibet Plateau, where the CH4 decrease was only 23.3 %.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference109 articles.
1. An, S. Q., Li, H. B., Guan, B. H., Zhou, C. F., Wang, Z. S., Deng, Z. F., Zhi, Y. B., Liu, Y. L., Xu, C., Fang, S. B., Jiang, J. H., and Li, H. L.: China's natural wetlands: past problems, current status, and future challenges, Ambio, 36, 335–342, 2007. 2. Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009 Vol. 2, Salinity, in: NOAA Atlas NESDIS 69, edited by: Levitus, S., US Government Printing Office, Washington, D.C., 1–184, 2010. 3. Atkinson, L. P. and Hall, J. R.: Methane distribution and production in the Georgia salt marsh, Estuar. Coast. Mar. Sci., 4, 677–686, 1976. 4. Bartlett, K. B., Harriss, R. C., and Sebacher, D. I.: Methane flux from coastal salt marshes, J. Geophys. Res., 90, 5710–5720, 1985. 5. Bartlett, K. B., Bartlett, D. S., Harriss, R. C., and Sebacher, D. I.: Methane emissions along a salt marsh salinity gradient, Biogeochemistry, 4, 183–202, 1987.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|