Evaluation of CH4MOD<sub>wetland</sub> and Terrestrial Ecosystem Model (TEM) used to estimate global CH<sub>4</sub> emissions from natural wetlands

Author:

Li Tingting,Lu Yanyu,Yu Lingfei,Sun Wenjuan,Zhang Qing,Zhang WenORCID,Wang Guocheng,Qin Zhangcai,Yu Lijun,Li Hailing,Zhang Ran

Abstract

Abstract. Wetlands are the largest and most uncertain natural sources of atmospheric methane (CH4). Several process-based models have been developed to quantify the magnitude and estimate spatial and temporal variations in CH4 emissions from global wetlands. Reliable models are required to estimate global wetland CH4 emissions. This study aimed to test two process-based models, CH4MODwetland and Terrestrial Ecosystem Model (TEM), against the CH4 flux measurements of marsh, swamp, peatland and coastal wetland sites across the world; specifically, model accuracy and generality were evaluated for different wetland types and in different continents, and then the global CH4 emissions from 2000 to 2010 were estimated. Both models showed similar high correlations with the observed seasonal/annual total CH4 emissions, and the regression of the observed versus computed total seasonal/annual CH4 emissions resulted in R2 values of 0.81 and 0.68 for CH4MODwetland and TEM, respectively. The CH4MODwetland produced accurate predictions for marshes, peatlands, swamps and coastal wetlands, with model efficiency (EF) values of 0.22, 0.52, 0.13 and 0.72, respectively. TEM produced good predictions for peatlands and swamps, with EF values of 0.69 and 0.74, respectively, but it could not accurately simulate marshes and coastal wetlands (EF <0). There was a good correlation between the simulated CH4 fluxes and the observed values on most continents. However, CH4MODwetland showed no correlation with the observed values in South America and Africa. TEM showed no correlation with the observations in Europe. The global CH4 emissions for the period 2000–2010 were estimated to be 105.31 ± 2.72 Tg yr−1 by CH4MODwetland and 134.31 ± 0.84 Tg yr−1 by TEM. Both models simulated a similar spatial distribution of CH4 emissions globally and on different continents. Marshes contribute 36 %–39 % of global CH4 emissions. Lakes/rivers and swamps are the second and third greatest contributors, respectively. Other wetland types account for only approximately 20 % of global emissions. Based on the model applicability, if we use the more accurate model, i.e., the one that performs best as evidenced by a higher model efficiency and a lower model bias, to estimate each continent and wetland type, we obtain a new assessment of 116.99–124.74 Tg yr−1 for the global CH4 emissions for the period 2000–2010. Our results imply that performance at a global scale may conceal model uncertainty. Efforts should be made to improve model accuracy for different wetland types and regions, particularly hotspot regions, to reduce the uncertainty in global assessments.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3