Detection of genetic variation and activity analysis of the promoter region of the cattle tRNA-modified gene <i>TRDMT1</i>
-
Published:2021-04-30
Issue:1
Volume:64
Page:147-155
-
ISSN:2363-9822
-
Container-title:Archives Animal Breeding
-
language:en
-
Short-container-title:Arch. Anim. Breed.
Author:
Yi XiaohuaORCID, He Shuai, Wang Shuhui, Zhao Haidong, Wu Mingli, Liu Shirong, Sun Xiuzhu
Abstract
Abstract. The tRNA modification gene in eukaryotes is relatively
conservative. As an important modification gene, the TRDMT1 gene plays an
important role in maintaining tRNA structural maintenance and reducing
mistranslation of protein translation by methylation of specific tRNA
subpopulations. Mouse and zebrafish TRDMT1 knockout experiments indicate that it
may mediate growth and development through tRNA modification. However, there
are no systematic reports on the function of tRNA-modified genes in
livestock. In this study, Qinchuan cattle DNA pool sequencing technology
was used. A G>C mutation in the −1223 bp position upstream of
the TRDMT1 translation initiator codon was found. At this locus, the dual-luciferase assay indicated that different genotypes cause differences in
transcriptional activity (P<0.05). Our experiment detected a natural
genetic variation of a tRNA modification gene TRDMT1, which may provide potential
natural molecular materials for the study of tRNA modification.
Funder
Key Research and Development Projects of Shaanxi Province Agriculture Research System of China Ministry of Agriculture and Rural Affairs of the People's Republic of China
Publisher
Copernicus GmbH
Reference31 articles.
1. Alexandrov, A., Chernyakov, I., Gu, W., Hiley, S. L., Hughes, T. R.,
Grayhack, E. J., and Phizicky, E. M.: Rapid tRNA decay can result from lack of
nonessential modifications, Mol. Cell, 21, 87–96,
https://doi.org/10.1016/j.molcel.2005.10.036, 2006. 2. Barrett, J. C., Hansoul, S., Nicolae, D. L., Cho, J. H., Duerr, R. H., Rioux, J. D., Brant, S. R., Silverberg, M. S., Taylor, K. D., Barmada, M. M., Bitton, A., Dassopoulos, T., Datta, L. W., Green, T., Griffiths, A. M., Kistner, E. O., Murtha, M. T., Regueiro, M. D., Rotter, J. I., Schumm, L. P., Steinhart, A. H., Targan, S. R.<span id="page154"/>, Xavier, R. J., Consortium, N. I. G., Libioulle, C., Sandor, C., Lathrop, M., Belaiche, J., Dewit, O., Gut, I., Heath, S., Laukens, D., Mni, M., Rutgeerts, P., Gossum, A, V., Zelenika, D., Franchimont, D., Hugot, J. P., Vos, M. D., Vermeire, S., Louis, E., Consortium, B. F. I., Consortium, W. T. C. C., Cardon, L. R., Anderson, C. A., Drummond, H., Nimmo, E., Ahmad, T., Prescott, N. J., Onnie, C. M., Fisher, S. A., Marchini, J., Ghori, J., Bumpstead, S., Gwilliam, R., Tremelling, M., Deloukas, P., Mansfield, J., Jewell, D., Satsangi, J., Mathew, C, G., Parkes, M., Georges, M., and Daly, M. J: Genome-wide association defines
more than 30 distinct susceptibility loci for Crohn's disease, Nat.
Genet., 40, 955–962, https://doi.org/10.1038/ng.175, 2008. 3. Bohnsack, K. E., Höbartner, C., and Bohnsack, M. T.: Eukaryotic
5-methylcytosine (m5C) RNA Methyltransferases: Mechanisms, Cellular
Functions, and Links to Disease, Genes, 10, 102, https://doi.org/10.3390/genes10020102, 2019. 4. Cătoi, A. F., Pârvu, A., Mureşan, A., and Busetto, L.: Metabolic
Mechanisms in Obesity and Type 2 Diabetes: Insights from Bariatric/Metabolic
Surgery, Obesity Facts, 8, 350–363, https://doi.org/10.1159/000441259,
2015. 5. Chen, H., Yang, H., Zhu, X., Yadav, T., Ouyang, J., Truesdell, S. S., Tan,
J., Wang, Y., Duan, M., Wei, L., Zou, L., Levine, A. S., Vasudevan, S., and Lan,
L.: m5C modification of mRNA serves a DNA damage code to promote homologous
recombination, Nat. Commun., 11, 2834,
https://doi.org/10.1038/s41467-020-16722-7, 2020.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|