On the importance of the humidity flux for the surface mass balance in the accumulation zone of the Greenland Ice Sheet

Author:

Dietrich Laura J.ORCID,Steen-Larsen Hans ChristianORCID,Wahl SonjaORCID,Faber Anne-Katrine,Fettweis XavierORCID

Abstract

Abstract. It is highly uncertain how the humidity flux between the snow surface and the atmosphere contributes to the surface mass balance (SMB) of the interior Greenland Ice Sheet (GrIS). Due to sparse observations, evaluations of the simulated humidity flux are limited. Model-based estimates of the humidity flux contribution to the SMB are, therefore, unconstrained and even disagree in magnitude and sign. In this study, we evaluate the regional climate model MAR at the EGRIP (East Greenland Ice-Core Project) site in the accumulation zone of the GrIS. We use a combined dataset of continuous one-level bulk estimates of the humidity flux covering the period of May 2016–August 2019 and eddy-resolving eddy-covariance humidity flux measurements from all four summer seasons. In summer, we document a bias of too little sublimation (−1.3 W m−2, −1.65 mm w.e.) caused by a cold bias in both air and surface temperature, leading to a reduced humidity gradient. In winter, MAR overestimates vapor deposition by about 1 order of magnitude. This is a consequence of an overestimated temperature gradient in too stable atmospheric conditions compared to observations. Both systematic errors cause a large discrepancy in the annual net humidity flux between the model and observations of −9 mm w.e. yr−1. Remarkably, the simulated net annual humidity flux contributes positively to the SMB, contrary to observations documenting a net sublimation flux. We correct the systematic errors by applying a simple but effective correction function to the simulated latent heat flux. Using this correction, we find that 5.1 % of the annual mass gain at the EGRIP site sublimates again, and 4.3 % of the total mass gain is deposited vapor from the near-surface air. The estimated net humidity flux contribution to the annual SMB is about −1 % (net sublimation) compared to +5.6 % for the uncorrected simulation. In summer, the corrected MAR simulation shows that vapor deposition accounts for 9.6 % of the total mass gain and that 31 % of the total mass gain at the EGRIP site sublimates again. The net fluxes contribute to −32 % of the summer SMB. These results demonstrate that the humidity flux is a major driver of the summer SMB in the accumulation zone of the GrIS and highlight that even small changes could increase its importance for the annual SMB in a warming climate.

Funder

H2020 European Research Council

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3