Drought resistance increases from the individual to the ecosystem level in highly diverse Neotropical rainforest: a meta-analysis of leaf, tree and ecosystem responses to drought

Author:

Janssen ThomasORCID,Fleischer KatrinORCID,Luyssaert SebastiaanORCID,Naudts KimORCID,Dolman HanORCID

Abstract

Abstract. The effects of future warming and drying on tropical forest functioning remain largely unresolved. Here, we conduct a meta-analysis of observed drought responses in Neotropical humid forests, focusing on carbon and water exchange. Measures of leaf-, tree- and ecosystem-scale performance were retrieved from 145 published studies conducted across 232 sites in Neotropical forests. Differentiating between seasonal and episodic drought, we find that (1) during seasonal drought the increase in atmospheric evaporative demand and a decrease in soil matric potential result in a decline in leaf water potential, stomatal conductance, leaf photosynthesis and stem diameter growth while leaf litterfall and leaf flushing increase. (2) During episodic drought, we observe a further decline in stomatal conductance, photosynthesis, stem growth and, in contrast to seasonal drought, a decline also in daily tree transpiration. Responses of ecosystem-scale processes, productivity and evapotranspiration are of a smaller magnitude and often not significant. Furthermore, we find that the magnitude and direction of a drought-induced change in photosynthesis, stomatal conductance and transpiration reported in a study is correlated to study-averaged wood density. Although wood density is often not functionally related to plant hydraulic properties, we find that it is a good proxy for hydraulic behaviour and can be used to predict leaf- and tree-scale responses to drought. We present new insights into the functioning of tropical forest in response to drought and present novel relationships between wood density and tropical-tree responses to drought.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3