A 60-yr record of atmospheric carbon monoxide reconstructed from Greenland firn air
Author:
Petrenko V. V.,Martinerie P.,Novelli P.,Etheridge D. M.,Levin I.,Wang Z.,Blunier T.,Chappellaz J.,Kaiser J.,Lang P.,Steele L. P.,Hammer S.,Mak J.,Langenfelds R. L.,Schwander J.,Severinghaus J. P.,Witrant E.,Petron G.,Battle M. O.,Forster G.,Sturges W. T.,Lamarque J.-F.,Steffen K.,White J. W. C.
Abstract
Abstract. We present a reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO was already higher in 1950 than it is today. CO mole fractions rose gradually until the 1970s and peaked in the 1970s or early 1980s, followed by a decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radical (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless large changes in OH are assumed. We argue that the available CO emission inventories chronically underestimate NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe.
Publisher
Copernicus GmbH
Reference72 articles.
1. Assonov, S. S., Brenninkmeijer, C. A. M., Jöckel, P., Mulvaney, R., Bernard, S., and Chappellaz, J.: Evidence for a CO increase in the SH during the 20th century based on firn air samples from Berkner Island, Antarctica, Atmos. Chem. Phys., 7, 295–308, https://doi.org/10.5194/acp-7-295-2007, 2007. 2. Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A., Blake, D. R., Tang, Q., and Prather, M. J.: Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air, Nature, 476, 198–201, 2011. 3. Bakwin, P. S., Tans, P. P., and Novelli, P. C.: Carbon-Monoxide Budget in the Northern Hemisphere, Geophys. Res. Lett., 21, 433–436, 1994. 4. Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J. W., Ellis, J. T., Conway, T., Zhang, N., Lang, P., and Clarke, A. D.: Atmospheric gas concentrations over the past century measured in air from firn at the South Pole, Nature, 383, 231–235, 1996. 5. Bernard, S., Röckmann, T., Kaiser, J., Barnola, J.-M., Fischer, H., Blunier, T., and Chappellaz, J.: Constraints on N2O budget changes since pre-industrial time from new firn air and ice core isotope measurements, Atmos. Chem. Phys., 6, 493–503, https://doi.org/10.5194/acp-6-493-2006, 2006.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|