Reconstruction of Northern Hemisphere 1950–2010 atmospheric non-methane hydrocarbons
Author:
Helmig D., Petrenko V., Martinerie P.ORCID, Witrant E., Röckmann T.ORCID, Zuiderweg A., Holzinger R., Hueber J., Stephens C., White J., Sturges W., Baker A.ORCID, Blunier T., Etheridge D.ORCID, Rubino M., Tans P.
Abstract
Abstract. The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane to the atmospheric growth rate of methane. Consequently, atmospheric NMHC are valuable indicators for tracking changes in anthropogenic emissions, photochemical ozone production, and greenhouse gases. This study investigates the 1950–2010 Northern Hemisphere atmospheric C2-C5 NMHC ethane, propane, i-butane, n-butane, i-pentane, and n-pentane. Atmospheric mole fractions of these trace gases were constructed from (a) air samples of these trace gases from air samples extracted from three firn boreholes in 2008 and 2009 at the North Greenland Eemian Ice Drilling (NEEM) site using state of the art models of trace gas transport in firn, and by (b) considering eight years of ambient NMHC monitoring data from five Arctic sites within the NOAA Global Monitoring Division (GMD) Cooperative Air Sampling Network. Results indicate that these NMHC increased by ~ 40–120% after 1950, peaked around 1980 (with the exception of ethane, which peaked approximately 10 years earlier), and have since dramatically decreased to be now back close to 1950 levels. The earlier peak time of ethane versus the C3-C5 NMHC suggests that different processes and emissions mitigation measures contributed to the decline in these NMHC. The 60 yr record also illustrates notable increases in the ratios of the isomeric iso-/n-butane and iso-/n-pentane ratios. Comparison of the reconstructed NMHC histories with 1950–2000 volatile organic compounds (VOC) emissions data and with other recently published ethane trend analyses from ambient air Pacific transect data showed (a) better agreement with North America and Western Europe emissions than with total Northern Hemisphere emissions data, and (b) better agreement with other Greenland firn air data NMHC history reconstructions than with the Pacific region trends. These analyses emphasize that for NMHC, having atmospheric lifetimes on the order of < 2 months, the Greenland firn air records are primarily a representation of Western Europe and North America emission histories.
Publisher
Copernicus GmbH
Reference70 articles.
1. Ambrose, D. and Tsonopoulos, C.: Vapor-liquid critical properties of elements and compounds 2. Normal-alkanes, J. Chem. Eng. Data, 40, 531–546, https://doi.org/10.1021/je00019a001, 1995. 2. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001. 3. Atkinson, R.: Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes, Atmos. Chem. Phys., 3, 2233–2307, https://doi.org/10.5194/acp-3-2233-2003, 2003. 4. Aydin, M., Verhulst, K. R., Saltzman, E. S., Battle, M. O., Montzka, S. A., Blake, D. R., Tang, Q., and Prather, M. J.: Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air, Nature, 476, 198–201, https://doi.org/10.1038/nature10352, 2011. 5. Aydin, M., Williams, M. B., and Saltzman, E. S.: Feasibility of reconstructing paleoatmospheric records of selected alkanes, methyl halides, and sulfur gases from Greenland ice cores, J. Geophys. Res.-Atmos., 112, D07312, https://doi.org/10.1029/2006jd008027, 2007.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|