Technical Note: The application of an improved gas and aerosol collector for ambient air pollutants in China
Author:
Dong H.-B.,Zeng L.-M.,Hu M.,Wu Y.-S.,Zhang Y.-H.,Slanina J.,Zheng M.,Wang Z.-F.,Jansen R.
Abstract
Abstract. An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98%) and particulate sulfate (as high as 99.5%). When applied in two major field campaigns (rural and coastal sites) in China, the GAC-IC system provided high-quality data in ambient conditions even under high loadings of pollutants. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer (43c, Thermo-Fisher, USA; R2 as 0.96), the HONO analyzer (LOPAP, Germany; R2 as 0.91 for nighttime samples), a filter sampler (Tianhong, China; R2 as 0.86 for SO42−), and Aerosol Mass Spectrometer (AMS, Aerodyne, USA; R2 above 0.77 for major species) over a wide range of concentrations. Through the application of the GAC-IC system, it was identified that 70% of chloride and nitrate by the filter method could be lost during daytime sampling due to high temperature in the rural site of Kaiping. In Changdao field campaign (coastal site) the comparison with the measurements by the GAC-IC suggested that the collection efficiency of AMS might be greatly influenced by high relative humidity (RH) especially in coastal or marine environment. Through laboratory and field studies, this instrument is proved highly reliable, which is particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation, as well as climate change.
Publisher
Copernicus GmbH
Reference42 articles.
1. Andreae, M. O., Schmid, O., Yang, H., Chand, D., Yu, J. Z., Zeng, L. M., and Zhang, Y. H.: Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China, Atmos. Environ., 42, 6335–6350, 2008. 2. Andrews, E., Saxena, P., Musarra, S., Hildemann, L. M., Koutrakis, P., McMurry, P. H., Olmez, I., and White, W. H.: Concentration and composition of atmospheric aerosols from the 1995 SEAVS experiment and a review of the closure between chemical and gravimetric measurements, J. Air Waste Manage. Assoc., 50, 648–664, 2000. 3. Buhr, S. M., Burr, M. P., Fehsenfeld, F. C., Holloway, J. S., Karst, U., Norton, R. B., Parrish, D. D., and Sievers, R. E.: Development of a semi-continuous method for the measurement of nitric acid vapor and particulate nitrate and sulfate, Atmos. Environ., 29, 2609–2624, 1995. 4. Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, 2008. 5. Chow, J. C.: Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air Waste Manage. Assoc., 45, 320–382, 1995.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|