The detection of nocturnal N<sub>2</sub>O<sub>5</sub> as HNO<sub>3</sub> by alkali- and aqueous-denuder techniques
Author:
Phillips G. J.,Makkonen U.,Schuster G.,Sobanski N.,Hakola H.,Crowley J.
Abstract
Abstract. The almost total anthropogenic control of the nitrogen cycle has led to wide ranging trans-national and national efforts to quantify the effects of reactive nitrogen on the environment. A number of monitoring techniques have been developed for the measurement of nitric acid and subsequent estimation of nitrogen deposition within large networks and for process studies on shorter measurement campaigns. We discuss the likelihood that many of these techniques are sensitive to another important gas-phase component of oxidized nitrogen; dinitrogen pentoxide (N2O5). We present measurements using a MARGA wet annular denuder device alongside measurements of N2O5 with a discussion of evidence from the laboratory and the field which suggests that alkali- and aqueous-denuder measurements are sensitive to the sum of HNO3 + N2O5. Nocturnal data from these denuder devices should be treated with care before using HNO3 concentrations derived from these data. This is a systematic error which is highly dependent on ambient conditions and is likely to cause systematic misinterpretation of datasets in periods where N2O5 is significant proportion of NOy. It is also likely that deposition estimates of HNO3 via data obtained with these methods is compromised to greater or lesser extents depending on the season and environment of the sampling location.
Publisher
Copernicus GmbH
Reference41 articles.
1. Aan de Brugh, J. M. J., Henzing, J. S., Schaap, M., Morgan, W. T., van Heerwaarden, C. C., Weijers, E. P., Coe, H., and Krol, M. C.: Modelling the partitioning of ammonium nitrate in the convective boundary layer, Atmos. Chem. Phys., 12, 3005–3023, https://doi.org/10.5194/acp-12-3005-2012, 2012. 2. Aas, W., Tsyro, S., Bieber, E., Bergström, R., Ceburnis, D., Ellermann, T., Fagerli, H., Frölich, M., Gehrig, R., Makkonen, U., Nemitz, E., Otjes, R., Perez, N., Perrino, C., Prévôt, A. S. H., Putaud, J.-P., Simpson, D., Spindler, G., Vana, M., and Yttri, K. E.: Lessons learnt from the first EMEP intensive measurement periods, Atmos. Chem. Phys., 12, 8073–8094, https://doi.org/10.5194/acp-12-8073-2012, 2012. 3. Ayers, J. D. and Simpson, W. R.: Measurements of N2O5 near fairbanks, Alaska, J. Geophys. Res., 111, D14309, https://doi.org/10.1029/2006JD007070, 2006. 4. Bertram, T. H., Thornton, J. A., Riedel, T. P., Middlebrook, A. M., Bahreini, R., Bates, T. S., Quinn, P. K., and Coffman, D. J.: Direct observations of N2O5 reactivity on ambient aerosol particles, Geophys. Res. Lett., 36, L19803, https://doi.org/10.1029/2009GL040248, 2009. 5. Brown, S. S., Stark, H., Ciciora, S. J., and Ravishankara, A. R.: In-situ measurement of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy, Geophys. Res. Lett., 28, 3227–3230, 2001.
|
|