Effect of nitrogen limitation and soil biophysics on Holocene greening of the Sahara

Author:

Lee Jooyeop,Claussen MartinORCID,Kim JeongwonORCID,Hong Je-Woo,Song In-SunORCID,Hong JinkyuORCID

Abstract

Abstract. The so-called Green Sahara (GS), which was a wet and vegetative Sahara region in the early to mid-Holocene, provides useful information on our climate simulation because it is a consequence of complex interaction between biophysical and climatic processes. It is still a challenge to simulate the GS in terms of vegetative extent and precipitation using current climate models. This study attempts to simulate the Green Sahara 8000 years ago by using the state-of-the-art Earth system model CESM that incorporates the nitrogen cycle and the soil–precipitation feedbacks. Our study puts more emphasis on the impact of soil biophysical properties (e.g., bare-soil albedo, porosity, heat capacity, and hydraulic conductivity) and soil nitrogen influenced by soil organic matter on the simulation of the GS. In this coupled simulation, vegetation interacts with changes in soil properties and soil organic matter by phenology, decomposition, and allocation of carbon and nitrogen. With changes in the Earth's orbit and dust in the early to mid-Holocene, the model simulates increased precipitation in North Africa but does not capture the extent of the GS. Our analysis shows that the Holocene greening is simulated better if the amount of soil nitrogen and soil texture is properly modified for the humid and vegetative GS period. Soil biochemical and physical properties increase precipitation and vegetation cover in North Africa through their influence on photosynthesis and surface albedo as well as their consequent enhanced albedo–precipitation and evapotranspiration–precipitation feedbacks. Our findings suggest that future climate simulation needs to consider consequent changes in soil nitrogen and texture with changes in vegetation cover and density for proper climate simulations.

Funder

National Research Foundation of Korea

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3