Consistent assimilation of MERIS FAPAR and atmospheric CO<sub>2</sub> into a terrestrial vegetation model and interactive mission benefit analysis

Author:

Kaminski T.,Knorr W.,Scholze M.,Gobron N.,Pinty B.,Giering R.,Mathieu P.-P.

Abstract

Abstract. The terrestrial biosphere is currently a strong sink for anthropogenic CO2 emissions. Through the radiative properties of CO2, the strength of this sink has a direct influence on the radiative budget of the global climate system. The accurate assessment of this sink and its evolution under a changing climate is, hence, paramount for any efficient management strategies of the terrestrial carbon sink to avoid dangerous climate change. Unfortunately, simulations of carbon and water fluxes with terrestrial biosphere models exhibit large uncertainties. A considerable fraction of this uncertainty reflects uncertainty in the parameter values of the process formulations within the models. This paper describes the systematic calibration of the process parameters of a terrestrial biosphere model against two observational data streams: remotely sensed FAPAR (fraction of absorbed photosynthetically active radiation) provided by the MERIS (ESA's Medium Resolution Imaging Spectrometer) sensor and in situ measurements of atmospheric CO2 provided by the GLOBALVIEW flask sampling network. We use the Carbon Cycle Data Assimilation System (CCDAS) to systematically calibrate some 70 parameters of the terrestrial BETHY (Biosphere Energy Transfer Hydrology) model. The simultaneous assimilation of all observations provides parameter estimates and uncertainty ranges that are consistent with the observational information. In a subsequent step these parameter uncertainties are propagated through the model to uncertainty ranges for predicted carbon fluxes. We demonstrate the consistent assimilation at global scale, where the global MERIS FAPAR product and atmospheric CO2 are used simultaneously. The assimilation improves the match to independent observations. We quantify how MERIS data improve the accuracy of the current and future (net and gross) carbon flux estimates (within and beyond the assimilation period). We further demonstrate the use of an interactive mission benefit analysis tool built around CCDAS to support the design of future space missions. We find that, for long-term averages, the benefit of FAPAR data is most pronounced for hydrological quantities, and moderate for quantities related to carbon fluxes from ecosystems. The benefit for hydrological quantities is highest for semi-arid tropical or sub-tropical regions. Length of mission or sensor resolution is of minor importance.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference28 articles.

1. Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P., Wofsy, S., and Zhang, X.: Couplings between changes in the climate system and biogeochemistry, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., M.Tignor, and Miller, H., chap. 7, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.

2. Giering, R. and Kaminski, T.: {R}ecipes for {a}djoint {c}ode {c}onstruction, ACM T. Math. Software, 24, 437–474, https://doi.org/10.1145/293686.293695, 1998.

3. GLOBALVIEW-CO<sub>2</sub>: Cooperative {a}tmospheric {d}ata {i}ntegration {p}roject – {c}arbon {d}ioxide, CD-ROM, NOAA CMDL, Boulder, Colorado, also available on Internet via anonymous FTP to: ftp://ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW, 2008.

4. Gobron, N., Pinty, B., Verstraete, M. M., and Widlowski, J.: Advanced vegetation indices optimized for up coming sensors: design, performance and applications, IEEE T. Geosc. Remote S., 38, 2489–2505, 2000.

5. Gobron, N., Pinty, B., Aussedat, O., Taberner, M., Faber, O., Mélin, F., Lavergne, T., Robustelli, M., and Snoeij, P.: Uncertainty estimates for the FAPAR operational products derived from {MERIS} – impact of top-of-atmosphere radiance uncertainties and validation with field data, Remote Sens. Eviron., 112, 1871–1883, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3