Untangling the Causal Links between Satellite Vegetation Products and Environmental Drivers on a Global Scale by the Granger Causality Method

Author:

Kovács Dávid D.1ORCID,Amin Eatidal1ORCID,Berger Katja12ORCID,Reyes-Muñoz Pablo1ORCID,Verrelst Jochem1ORCID

Affiliation:

1. Image Processing Laboratory (IPL), Universitat de València, C/Catedrático José Beltrán, 2, 46980 Paterna, Spain

2. Mantle Labs GmbH Grünentorgasse 19/4, 1090 Vienna, Austria

Abstract

The Granger Causality (GC) statistical test explores the causal relationships between different time series variables. By employing the GC method, the underlying causal links between environmental drivers and global vegetation properties can be untangled, which opens possibilities to forecast the increasing strain on ecosystems by droughts, global warming, and climate change. This study aimed to quantify the spatial distribution of four distinct satellite vegetation products’ (VPs) sensitivities to four environmental land variables (ELVs) at the global scale given the GC method. The GC analysis assessed the spatially explicit response of the VPs: (i) the fraction of absorbed photosynthetically active radiation (FAPAR), (ii) the leaf area index (LAI), (iii) solar-induced fluorescence (SIF), and, finally, (iv) the normalized difference vegetation index (NDVI) to the ELVs. These ELVs can be categorized as water availability assessing root zone soil moisture (SM) and accumulated precipitation (P), as well as, energy availability considering the effect of air temperature (T) and solar shortwave (R) radiation. The results indicate SM and P are key drivers, particularly causing changes in the LAI. SM alone accounts for 43%, while P accounts for 41%, of the explicitly caused areas over arid biomes. SM further significantly influences the LAI at northern latitudes, covering 44% of cold and 50% of polar biome areas. These areas exhibit a predominant response to R, which is a possible trigger for snowmelt, showing more than 40% caused by both cold and polar biomes for all VPs. Finally, T’s causality is evenly distributed amongst all biomes with fractional covers between ∼10 and 20%. By using the GC method, the analysis presents a novel way to monitor the planet’s ecosystem, based on solely two years as input data, with four VPs acquired by the synergy of Sentinel-3 (S3) and 5P (S5P) satellite data streams. The findings indicated unique, biome-specific responses of vegetation to distinct environmental drivers.

Funder

European Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3