The Many Shades of the Vegetation–Climate Causality: A Multimodel Causal Appreciation

Author:

Shao Yuhao1ORCID,Hagan Daniel Fiifi Tawia2ORCID,Li Shijie3ORCID,Zhou Feihong4,Zou Xiao5,Cabral Pedro6ORCID

Affiliation:

1. School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. Hydro-Climate Extremes Laboratory, Ghent University, 9000 Ghent, Belgium

3. Department of Civil and Environmental Engineering, University of Florence, 50139 Firenze, Italy

4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

5. Tai’an Meteorological Bureau, Tai’an 271000, China

6. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract

The causal relationship between vegetation and temperature serves as a driving factor for global warming in the climate system. However, causal relationships are typically characterized by complex facets, particularly within natural systems, necessitating the ongoing development of robust approaches capable of addressing the challenges inherent in causality analysis. Various causality approaches offer distinct perspectives on understanding causal structures, even when experiments are meticulously designed with a specific target. Here, we use the complex vegetation–climate interaction to demonstrate some of the many facets of causality analysis by applying three different causality frameworks including (i) the kernel Granger causality (KGC), a nonlinear extension of the Granger causality (GC), to understand the nonlinearity in the vegetation–climate causal relationship; (ii) the Peter and Clark momentary conditional independence (PCMCI), which combines the Peter and Clark (PC) algorithm with the momentary conditional independence (MCI) approach to distinguish the feedback and coupling signs in vegetation–climate interaction; and (iii) the Liang–Kleeman information flow (L-K IF), a rigorously formulated causality formalism based on the Liang–Kleeman information flow theory, to reveal the causal influence of vegetation on the evolution of temperature variability. The results attempt to capture a fuller understanding of the causal interaction of leaf area index (LAI) on air temperature (T) during 1981–2018, revealing the characteristics and differences in distinct climatic tipping point regions, particularly in terms of nonlinearity, feedback signals, and variability sources. This study demonstrates that realizing a more holistic causal structure of complex problems like the vegetation–climate interaction benefits from the combined use of multiple models that shed light on different aspects of its causal structure, thus revealing novel insights that are missing when we rely on one single approach. This prompts the need to move toward a multimodel causality analysis that could reduce biases and limitations in causal interpretations.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3