DETECTION AND CLASSIFICATION OF BRIDGE CROSSING EVENTS WITH GROUND-BASED INTERFEROMETRIC RADAR DATA AND MACHINE LEARNING APPROACHES

Author:

Arnold M.,Keller S.

Abstract

Abstract. In this paper, we investigate the potential of detecting and classifying vehicle crossings (events) on bridges with ground-based interferometric radar (GBR) data and machine learning (ML) approaches. The GBR data and image data recorded by a unmanned aerial vehicle, used as ground truth, have been measured during field campaigns at three bridges in Germany non-invasively. Since traffic load of the bridges has taken place during the measurement, we have been able to monitor the bridge dynamics in terms of a vertical displacement. We introduce a methodological approach with three steps including preprocessing of the GBR data, feature extraction and well-chosen ML models. The impact of the preprocessing approaches as well as of the selected features on the classification results is evaluated. In case of the distinction between event and no event, adaptive boosting with low-pass filtering achieves the best classification results. Regarding the distinction between different class types of vehicles, random forest performs best utilising low-pass filtered GBR data. Our results reveal the potential of the GBR data combined with the respective methodological approach to detect and to classify events under real-world conditions. In conclusion, the preliminary results of this paper provide a basis for further improvements such as advanced preprocessing of the GBR data to extracted additional features which then can be used as input for the ML models.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3