DEEP LEARNING FOR AUTOMATIC BUILDING DAMAGE ASSESSMENT: APPLICATION IN POST-DISASTER SCENARIOS USING UAV DATA

Author:

Calantropio A.,Chiabrando F.ORCID,Codastefano M.,Bourke E.

Abstract

Abstract. During the last few years, the technical and scientific advances in the Geomatics research field have led to the validation of new mapping and surveying strategies, without neglecting already consolidated practices. The use of remote sensing data for damage assessment in post-disaster scenarios underlined, in several contexts and situations, the importance of the Geomatics applied techniques for disaster management operations, and nowadays their reliability and suitability in environmental emergencies is globally recognized. In this paper, the authors present their experiences in the framework of the 2016 earthquake in Central Italy and the 2019 Cyclone Idai in Mozambique. Thanks to the use of image-based survey techniques as the main acquisition methods (UAV photogrammetry), damage assessment analysis has been carried out to assess and map the damages that occurred in Pescara del Tronto village, using DEEP (Digital Engine for Emergency Photo-analysis) a deep learning tool for automatic building footprint segmentation and building damage classification, functional to the rapid production of cartography to be used in emergency response operations. The performed analyses have been presented, and the strengths and weaknesses of the employed methods and techniques have been outlined. In conclusion and based on the authors' experience, some operational suggestions and best practices are provided and future research perspectives within the same research topic are introduced.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3