Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints

Author:

Ferdaus Md Meftahul12ORCID,Abdelguerfi Mahdi12,Niles Kendall N.3,Pathak Ken3,Tom Joe3

Affiliation:

1. Canizaro Livingston Gulf States Center for Environmental Informatics The University of New Orleans New Orleans LA 70148 USA

2. Department of Computer Science The University of New Orleans New Orleans LA 70148 USA

3. US Army Corps of Engineers Engineer Research and Development Center Vicksburg MS 39180 USA

Abstract

Onboard image analysis enables real‐time autonomous capabilities for unmanned platforms including aerial, ground, and aquatic drones. Performing classification on embedded systems, rather than transmitting data, allows rapid perception and decision‐making critical for time‐sensitive applications such as search and rescue, hazardous environment exploration, and military operations. To fully capitalize on these systems’ potential, specialized deep learning solutions are needed that balance accuracy and computational efficiency for time‐sensitive inference. This article introduces the widened attention‐enhanced atrous convolution‐based efficient network (WACEfNet), a new convolutional neural network designed specifically for real‐time visual classification challenges using resource‐constrained embedded devices. WACEfNet builds on EfficientNet and integrates innovative width‐wise feature processing, atrous convolutions, and attention modules to improve representational power without excessive overhead. Extensive benchmarking confirms state‐of‐the‐art performance from WACEfNet for aerial imaging applications while remaining suitable for embedded deployment. The improvements in accuracy and speed demonstrate the potential of customized deep learning advancements to unlock new capabilities for unmanned aerial vehicles and related embedded systems with tight size, weight, and power constraints. This research offers an optimized framework, combining widened residual learning and attention mechanisms, to meet the unique demands of high‐fidelity real‐time analytics across a variety of embedded perception paradigms.

Funder

U.S. Army Corps of Engineers

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3