COOPERATIVE IMAGE ORIENTATION CONSIDERING DYNAMIC OBJECTS

Author:

Trusheim P.,Mehltretter M.,Rottensteiner F.,Heipke C.

Abstract

Abstract. In the context of image orientation, it is commonly assumed that the environment is completely static. This is why dynamic elements are typically filtered out using robust estimation procedures. Especially in urban areas, however, many such dynamic elements are present in the environment, which leads to a noticeable amount of errors that have to be detected via robust adjustment. This problem is even more evident in the case of cooperative image orientation using dynamic objects as ground control points (GCPs), because such dynamic objects carry the relevant information. One way to deal with this challenge is to detect these dynamic objects prior to the adjustment and to process the related image points separately. To do so, a novel methodology to distinguish dynamic and static image points in stereoscopic image sequences is introduced in this paper, using a neural network for the detection of potentially dynamic objects and additional checks via forward intersection. To investigate the effects of the consideration of dynamic points in the adjustment, an image sequence of an inner-city traffic scenario is used; image orientation, as well as the 3D coordinates of tie points, are calculated via a robust bundle adjustment. It is shown that compared to a solution without considering dynamic points, errors in the tie points are significantly reduced, while the median of the precision of all 3D coordinates of the tie points is improved.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative Image Orientation with Dynamic Objects;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2024-07-26

2. Empirical uncertainty evaluation for the pose of a kinematic LiDAR-based multi-sensor system;Journal of Applied Geodesy;2024-05-22

3. Error State Kalman Filter with Implicit Measurement Equations for Position Tracking of a Multi-Sensor System with IMU and LiDAR;2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN);2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3