SHORT TERM URBAN TRAFFIC FORECASTING USING DEEP LEARNING

Author:

Albertengo G.,Hassan W.

Abstract

Abstract. In today’s world, the number of vehicles is increasing rapidly in developing countries and China and remains stable in all other countries, while road infrastructure mostly remains unchanged, causing congestion problems in many cities. Urban Traffic Control systems can be helpful in counteracting congestion if they receive accurate information on traffic flow. So far, these data are collected by sensors on roads, such as Inductive Loops, which are rather expensive to install and maintain. A less expensive approach could be to use a limited number of sensors combined with Artificial Intelligence to forecast the intensity of traffic at any point in a city. In this paper, we propose a simple yet accurate short-term urban traffic forecasting solution applying supervised window-based regression analysis using Deep Learning algorithm. Experimental results show that is it possible to forecast the intensity of traffic with good accuracy just monitoring its intensity in the last few minutes. The most significant result, in our opinion, is that the machine can generate accurate predictions even with no knowledge of the current time, the day of the week or the type of the day (holiday, weekday, etc).

Publisher

Copernicus GmbH

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sequence to sequence hybrid Bi-LSTM model for traffic speed prediction;Expert Systems with Applications;2024-02

2. Urban Traffic Forecasting using Federated and Continual Learning;2023 6th Conference on Cloud and Internet of Things (CIoT);2023-03-20

3. Decision support system (DSS) for traffic prediction and building a dynamic internet community using Netnography technology in the city of Amman;Journal of Experimental & Theoretical Artificial Intelligence;2023-01-14

4. Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data;Computers;2022-08-23

5. Module for Detection and Elimination of Contractions in Big Data in The Intellectual Information System of Public Transport;2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT);2021-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3