THE MOST COMMON GEOMETRIC AND SEMANTIC ERRORS IN CITYGML DATASETS

Author:

Biljecki F.,Ledoux H.,Du X.,Stoter J.,Soon K. H.,Khoo V. H. S.

Abstract

Abstract. To be used as input in most simulation and modelling software, 3D city models should be geometrically and topologically valid, and semantically rich. We investigate in this paper what is the quality of currently available CityGML datasets, i.e. we validate the geometry/topology of the 3D primitives (Solid and MultiSurface), and we validate whether the semantics of the boundary surfaces of buildings is correct or not. We have analysed all the CityGML datasets we could find, both from portals of cities and on different websites, plus a few that were made available to us. We have thus validated 40M surfaces in 16M 3D primitives and 3.6M buildings found in 37 CityGML datasets originating from 9 countries, and produced by several companies with diverse software and acquisition techniques. The results indicate that CityGML datasets without errors are rare, and those that are nearly valid are mostly simple LOD1 models. We report on the most common errors we have found, and analyse them. One main observation is that many of these errors could be automatically fixed or prevented with simple modifications to the modelling software. Our principal aim is to highlight the most common errors so that these are not repeated in the future. We hope that our paper and the open-source software we have developed will help raise awareness for data quality among data providers and 3D GIS software producers.

Publisher

Copernicus GmbH

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inferring the number of floors for residential buildings;International Journal of Geographical Information Science;2022-12-30

2. Assessing and benchmarking 3D city models;International Journal of Geographical Information Science;2022-11-08

3. Reconstructing historical 3D city models;Urban Informatics;2022-10-21

4. Towards automatic reconstruction of 3D city models tailored for urban flow simulations;Frontiers in Built Environment;2022-08-30

5. A Robustness Study for the Extraction of Watertight Volumetric Models from Boundary Representation Data;ISPRS International Journal of Geo-Information;2022-03-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3