Towards automatic reconstruction of 3D city models tailored for urban flow simulations

Author:

Pađen Ivan,García-Sánchez Clara,Ledoux Hugo

Abstract

In the computational fluid dynamics simulation workflow, the geometry preparation step is often regarded as a tedious, time-consuming task. Many practitioners consider it one of the main bottlenecks in the simulation process. The more complex the geometry, the longer the necessary work, meaning this issue is amplified for urban flow simulations that cover large areas with complex building geometries. To address the issue of geometry preparation, we propose a workflow for automatically reconstructing simulation-ready 3D city models. The workflow combines 2D geographical datasets (e.g., cadastral data, topographic datasets) and aerial point cloud-based elevation data to reconstruct terrain, buildings, and imprint surface layers like water, low vegetation, and roads. Imprinted surface layers serve as different roughness surfaces for modeling the atmospheric boundary layer. Furthermore, the workflow is capable of automatically defining the influence region and domain size according to best practice guidelines. The resulting geometry aims to be error-free: without gaps, self-intersections, and non-manifold edges. The workflow was implemented into an open-source framework using modern, robust, and state-of-the-art libraries with the intent to be used for further developments. Our approach limits the geometry generation step to the order of hours (including input data retrieval and preparation), producing geometries that can be directly used for computational grid generation without additional preparation. The reconstruction done by the algorithm can last from a few seconds to a few minutes, depending on the size of the input data. We obtained and prepared the input data for our verification study in about 2 hours, while the reconstruction process lasted 1 minute. The unstructured computational meshes we created in an automatic mesh generator show satisfactory quality indicators and the subsequent numerical simulation exhibits good convergence behavior with the grid convergence index of observed variables less than 5%.

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3