Author:
Matasci G.,Plante J.,Kasa K.,Mousavi P.,Stewart A.,Macdonald A.,Webster A.,Busler J.
Abstract
Abstract. We present a deep learning-based vessel detection and (re-)identification approach from spaceborne optical images. We introduce these two components as part of a maritime surveillance from space pipeline and present experimental results on challenging real-world maritime datasets derived from WorldView imagery. First, we developed a vessel detection model based on RetinaNet achieving a performance of 0.795 F1-score on a challenging multi-scale dataset. We then collected a large-scale dataset for vessel identification by applying the detection model on 200+ optical images, detecting the vessels therein and assigning them an identity via an Automatic Identification System association framework. A vessel re-identification model based on Twin neural networks has then been trained on this dataset featuring 2500+ unique vessels with multiple repeated occurrences across different acquisitions. The model allows to naturally establish similarities between vessel images. It returns a relevant ranking of candidate vessels from a database when provided an input image for a specific vessel the user might be interested in, with top-1 and top-10 accuracies of 38.7% and 76.5%, respectively. This study demonstrates the potential offered by the latest advances in deep learning and computer vision when applied to optical remote sensing imagery in a maritime context, opening new opportunities for automated vessel monitoring and tracking capabilities from space.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献