Automatic Deployment of Convolutional Neural Networks on FPGA for Spaceborne Remote Sensing Application

Author:

Yan TianweiORCID,Zhang Ning,Li Jie,Liu Wenchao,Chen He

Abstract

In recent years, convolutional neural network (CNN)-based algorithms have been widely used in remote sensing image processing and show tremendous performance in a variety of application fields. However, large amounts of data and intensive computations make the deployment of CNN-based algorithms a challenging problem, especially for the spaceborne scenario where resources and power consumption are limited. To tackle this problem, this paper proposes an automatic CNN deployment solution on resource-limited field-programmable gate arrays (FPGAs) for spaceborne remote sensing applications. Firstly, a series of hardware-oriented optimization methods are proposed to reduce the complexity of the CNNs. Secondly, a hardware accelerator is designed. In this accelerator, a reconfigurable processing engine array with efficient convolutional computation architecture is used to accelerate CNN-based algorithms. Thirdly, to bridge the optimized CNNs and hardware accelerator, a compilation toolchain is introduced into the deployment solution. Through the automatic conversion from CNN models to hardware instructions, various networks can be deployed on hardware in real-time. Finally, we deployed an improved VGG16 network and an improved YOLOv2 network on Xilinx AC701 to evaluate the effectiveness of the proposed deployment solution. The experiments show that with only 3.407 W power consumption and 94 DSP consumption, our solution achieves 23.06 giga operations per second (GOPS) throughput in the improved VGG16 and 22.17 GOPS throughput in the improved YOLOv2. Compared to the related works, the DSP efficiency of our solution is improved by 1.3–2.7×.

Funder

National Science Fund for Distinguished Young Scholars

Civil Aviation Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3