A CRITICAL ANALYSIS OF INTERNAL RELIABILITY FOR UNCERTAINTY QUANTIFICATION OF DENSE IMAGE MATCHING IN MULTI-VIEW STEREO

Author:

Huang D.,Qin R.

Abstract

Abstract. Nowadays, photogrammetrically derived point clouds are widely used in many civilian applications due to their low cost and flexibility in acquisition. Typically, photogrammetric point clouds are assessed through reference data such as LiDAR point clouds. However, when reference data are not available, the assessment of photogrammetric point clouds may be challenging. Since these point clouds are algorithmically derived, their accuracies and precisions are highly varying with the camera networks, scene complexity, and dense image matching (DIM) algorithms, and there is no standard error metric to determine per-point errors. The theory of internal reliability of camera networks has been well studied through first-order error estimation of Bundle Adjustment (BA), which is used to understand the errors of 3D points assuming known measurement errors. However, the measurement errors of the DIM algorithms are intricate to an extent that every single point may have its error function determined by factors such as pixel intensity, texture entropy, and surface smoothness. Despite the complexity, there exist a few common metrics that may aid the process of estimating the posterior reliability of the derived points, especially in a multi-view stereo (MVS) setup when redundancies are present. In this paper, by using an aerial oblique photogrammetric block with LiDAR reference data, we analyze several internal matching metrics within a common MVS framework, including statistics in ray convergence, intersection angles, DIM energy, etc. We associate these metrics to the per-point errors evaluated through LiDAR reference data and discuss their potential contributions in estimating internal reliabilities of point clouds derived from DIM algorithms. The experimental results show that ray convergence and DIM energy are relevant indicators for the accuracy of the generated point clouds. Initial investigation shows that these two indicators could be further utilized to infer the measurement errors without reference data, which could potentially estimate the reliabilities of point clouds through error propagation.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3