Multi‐tiling neural radiance field (NeRF)—geometric assessment on large‐scale aerial datasets

Author:

Xu Ningli123,Qin Rongjun1234ORCID,Huang Debao123,Remondino Fabio5ORCID

Affiliation:

1. Geospatial Data Analytics Lab The Ohio State University Columbus Ohio USA

2. Department of Civil, Environmental and Geodetic Engineering The Ohio State University Columbus Ohio USA

3. Department of Electrical and Computer Engineering The Ohio State University Columbus Ohio USA

4. Translational Data Analytics Institute The Ohio State University Columbus Ohio USA

5. 3D Optical Metrology (3DOM) Unit Bruno Kessler Foundation (FBK) Trento Italy

Abstract

AbstractNeural radiance fields (NeRF) offer the potential to benefit 3D reconstruction tasks, including aerial photogrammetry. However, the scalability and accuracy of the inferred geometry are not well‐documented for large‐scale aerial assets. We aim to provide a thorough assessment of NeRF in 3D reconstruction from aerial images and compare it with three traditional multi‐view stereo (MVS) pipelines. However, typical NeRF approaches are not designed for large‐format aerial images, which result in very high memory consumption (often cost‐prohibitive) and slow convergence when directly applied to aerial assets. Despite a few NeRF variants adopting a representation tiling scheme to increase scalability, the random ray‐sampling strategy during training still hinders its general applicability for aerial assets. To perform an effective evaluation, we propose a new scheme to scale NeRF. In addition to representation tiling, we introduce a location‐specific sampling technique as well as a multi‐camera tiling (MCT) strategy to reduce memory consumption during image loading for RAM, representation training for GPU memory and increase the convergence rate within tiles. The MCT method decomposes a large‐frame image into multiple tiled images with different camera models, allowing these small‐frame images to be fed into the training process as needed for specific locations without a loss of accuracy. This enables NeRF approaches to be applied to aerial datasets on affordable computing devices, such as regular workstations. The proposed adaptation can be implemented to adapt for scaling any existing NeRF methods. Therefore, in this paper, instead of comparing accuracy performance against different NeRF variants, we implement our method based on a representative approach, Mip‐NeRF, and compare it against three traditional photogrammetric MVS pipelines on a typical aerial dataset against lidar reference data to assess NeRF's performance. Both qualitative and quantitative results suggest that the proposed NeRF approach produces better completeness and object details than traditional approaches, although as of now, it still falls short in terms of accuracy. The codes and datasets are made publicly available at https://github.com/GDAOSU/MCT_NERF.

Funder

Office of Naval Research

Publisher

Wiley

Reference66 articles.

1. Building Rome in a day

2. Agisoft Metashape(2023)Agisoft Metashape. Available from:https://www.agisoft.com[Accessed 12 July 2023].

3. A comparative study on deep‐learning methods for dense image matching of multi‐angle and multi‐date remote sensing stereo‐images

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Surface Reconstruction: A Game Changer for 3D Data Collection from Airborne Imagery?;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3