Mid-latitude tropospheric ozone columns from the MOZAIC program: climatology and interannual variability

Author:

Zbinden R. M.,Cammas J.-P.,Thouret V.,Nédélec P.,Karcher F.,Simon P.

Abstract

Abstract. Several thousands of ozone vertical profiles collected in the course of the MOZAIC programme (Measurements of Ozone, Water Vapour, Carbon Monoxide and Nitrogen Oxides by In-Service Airbus Aircraft) from August 1994 to February 2002 are investigated to bring out climatological and interannual variability aspects. The study is centred on the most frequently visited MOZAIC airports, i.e. Frankfurt (Germany), Paris (France), New York (USA) and the cluster of Tokyo, Nagoya and Osaka (Japan). The analysis focuses on the vertical integration of ozone from the ground to the dynamical tropopause and the vertical integration of stratospheric-origin ozone throughout the troposphere. The characteristics of the MOZAIC profiles: frequency of flights, accuracy, precision, and depth of the troposphere observed, are presented. The climatological analysis shows that the Tropospheric Ozone Column (TOC) seasonal cycle ranges from a wintertime minimum at all four stations to a spring-summer maximum in Frankfurt, Paris, and New York. Over Japan, the maximum occurs in spring presumably because of the earlier springtime sun. The incursion of monsoon air masses into the boundary layer and into the mid troposphere then steeply diminishes the summertime value. Boundary layer contributions to the TOC are 10% higher in New York than in Frankfurt and Paris during spring and summer, and are 10% higher in Japan than in New York, Frankfurt and Paris during autumn and early spring. Local and remote anthropogenic emissions, and biomass burning over upstream regions of Asia may be responsible for the larger low- and mid-tropospheric contributions to the tropospheric ozone column over Japan throughout the year except during the summer-monsoon season. A simple Lagrangian analysis has shown that a minimum of 10% of the TOC is of stratospheric-origin throughout the year. Investigation of the short-term trends of the TOC over the period 1995–2001 shows a linear increase 0.7%/year in Frankfurt, 0.8%/year in Japan, 1.1%/year in New York and 1.6%/year in Paris for the reduced 1995–1999 period. Dominant ingredients of these positive short-term trends are the continuous increase of wintertime tropospheric ozone columns from 1996 to 1999 and the positive contributions of the mid troposphere whatever the season.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3