Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017

Author:

Lestrelin Hugo,Legras BernardORCID,Podglajen AurélienORCID,Salihoglu Mikail

Abstract

Abstract. The two most intense wildfires of the last decade that took place in Canada in 2017 and Australia in 2019–2020 were followed by large injections of smoke into the stratosphere due to pyro-convection. After the Australian event, Khaykin et al. (2020) and Kablick et al. (2020) discovered that part of this smoke self-organized as anticyclonic confined vortices that rose in the mid-latitude stratosphere up to 35 km. Based on Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations and the ERA5 reanalysis, this new study analyses the Canadian case and finds, similarly, that a large plume had penetrated the stratosphere by 12–13 August 2017 and then became trapped within a mesoscale anticyclonic structure that travelled across the Atlantic. It then broke into three offspring that could be followed until mid-October, performing three round-the-world journeys and rising up to 23 km. We analyse the dynamical structure of the vortices produced by these two wildfires and demonstrate how the assimilation of the real temperature and ozone data from instruments measuring the signature of the vortices explains the appearance and maintenance of the vortices in the constructed dynamical fields. We propose that these vortices can be seen as bubbles of small, almost vanishing, potential vorticity and smoke carried vertically across the stratification from the troposphere inside the middle stratosphere by their internal heating, against the descending flux of the Brewer–Dobson circulation.

Funder

Agence Nationale de la Recherche

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3