Smoke with Induced Rotation and Lofting (SWIRL) Generated by the February 2009 Australian Black Saturday PyroCb Plume

Author:

Allen D. R.1ORCID,Fromm M. D.1,Kablick G. P.1ORCID,Nedoluha G. E.1,Peterson D. A.2

Affiliation:

1. Remote Sensing Division Naval Research Lab Washington DC USA

2. Marine Meteorology Division Naval Research Lab Monterey CA USA

Abstract

AbstractThe discovery of smoke‐induced dynamical anomalies in the stratosphere associated with the 2019/2020 Australian New Year pyrocumulonimbus (pyroCb) super outbreak initiated a new field of study involving aerosol/weather anomalies. This paper documents the dynamical anomalies associated with the February 2009 Australian Black Saturday pyroCb outbreak. Positive potential vorticity anomalies (indicating anticyclonic rotation) with horizontal extent ∼1000 km and vertical thickness ∼2 km are associated with the plume, which we classify as a Smoke With Induced Rotation and Lofting (SWIRL). The SWIRL initially formed east of Australia, but then moved westward, crossing over Australia, and continuing to Africa. The SWIRL lasted for nearly three weeks (13 February–4 March), traveling ∼27,000 km and rising from potential temperatures of ∼410–500 K (altitudes ∼18–21 km). The altitude of the SWIRL is corroborated with coincident satellite‐based profiles of H2O, CO, HCN, O3, and aerosol extinction. A vertical temperature dipole (±3 K) accompanied the PV anomaly, as verified with coincident Global Navigation Satellite System radio occultation temperatures. The SWIRL dissipated as it passed over Africa. Operational ECMWF forecasts with early initialization (13 February) and late initialization (21 February) are examined. In the early case, the forecasted PV anomaly disappeared within 4 days, as expected due to lack of smoke heating in the forecast model. In the late case, while the forecasted PV anomaly was weaker than in the reanalyzes, a remnant anomaly remained out to 10 days.

Funder

Earth Sciences Division

U.S. Navy

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3