Abstract
Abstract. This paper is devoted to the experimental quantitative characterization of the shape and orientation distribution of ice particles in clouds. The characterization is based on measured and modeled elevation dependencies of the polarimetric parameters differential reflectivity and correlation coefficient. The polarimetric data are obtained using a newly developed 35 GHz cloud radar MIRA-35 with hybrid polarimetric configuration and scanning capabilities. The full procedure chain of the technical implementation and the realization of the setup of the hybrid-mode cloud radar for the shape determination are presented. This includes the description of phase adjustments in the transmitting paths, the introduction of the general data processing scheme, correction of the data for the differences of amplifications and electrical path lengths in the transmitting and receiving channels, the rotation of the polarization basis by 45°, the correction of antenna effects on polarimetric measurements, the determination of spectral polarimetric variables, and the formulation of a scheme to increase the signal-to-noise ratio. Modeling of the polarimetric variables is based on existing back-scattering models assuming the spheroidal representation of cloud scatterers. The parameters retrieved from the model are polarizability ratio and degree of orientation, which can be assigned to certain particle orientations and shapes. The developed algorithm is applied to a measurement of the hybrid-mode cloud radar taken on 20 October 2014 in Cabauw, the Netherlands, in the framework of the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign. The case study shows the retrieved polarizability ratio and degree of orientation of ice particles for a cloud system of three cloud layers at different heights. Retrieved polarizability ratios are 0.43, 0.85, and 1.5 which correspond to oblate, quasi-spherical, and columnar ice particles, respectively. It is shown that the polarizability ratio is useful for the detection of aggregation/riming processes. The orientation of oblate and prolate particles is estimated to be close to horizontal while quasi-spherical particles were found to be more randomly oriented.
Funder
Seventh Framework Programme
Reference63 articles.
1. Born, M. and Wolf, E.: Principles of Optics, Pergamon Press, Oxford, 1975.
2. Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler Weather Radar,
Cambridge University Press, Cambridge, UK, 662 pp., 2001.
3. Bühl, J., Ansmann, A., Seifert, P., Baars, H., and Engelmann, R.: Toward a
quantitative characterization of heterogeneous ice formation with
lidar/radar: comparison of CALIPSO/CloudSat with ground-based observations,
Geophys. Res. Lett., 40, 4404–4408, https://doi.org/10.1002/grl.50792, 2013.
4. Chandrasekar, V. and Keeler, R. J.: Antenna pattern analysis and measurements
for multiparameter radars, J. Atmos. Ocean. Tech., 10, 674–683,
https://doi.org/10.1175/1520-0426(1993)010<0674:APAAMF>2.0.CO;2, 1993.
5. De Boer, G., Eloranta, E. W., and Shupe, M. D.: Arctic mixed-phase stratiform
cloud properties from multiple years of surface-based measurements at two
high-latitude locations, J. Atmos. Sci., 66, 2874–2887,
https://doi.org/10.1175/2009JAS3029.1, 2009.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献