Arctic Mixed-Phase Stratiform Cloud Properties from Multiple Years of Surface-Based Measurements at Two High-Latitude Locations

Author:

de Boer Gijs1,Eloranta Edwin W.1,Shupe Matthew D.2

Affiliation:

1. University of Wisconsin—Madison, Madison, Wisconsin

2. Cooperative Institute for Research in Environmental Science, and NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract Macro- and microphysical properties of single-layer stratiform mixed-phase clouds are derived from multiple years of lidar, radar, and radiosonde observations. Measurements were made as part of the Mixed-Phase Arctic Clouds Experiment (MPACE) and the Study of Environmental Arctic Change (SEARCH) in Barrow, Alaska, and Eureka, Nunavut, Canada, respectively. Single-layer mixed-phase clouds occurred between 4% and 26% of the total time observed, varying with season and location. They had mean cloud-base heights between ∼700 and 2100 m and thicknesses between ∼200 and 700 m. Seasonal mean cloud optical depths ranged from 2.2 up. The clouds existed at temperatures of ∼242–271 K and occurred under different wind conditions, depending on season. Utilizing retrievals from a combination of lidar, radar, and microwave radiometer, mean cloud microphysical properties were derived, with mean liquid effective diameters estimated from 16 to 49 μm, mean liquid number densities on the order of 104–105 L−1, and mean water contents estimated between 0.07 and 0.28 g m−3. Ice precipitation was shown to have mean ice effective diameters of 50–125 μm, mean ice number densities on the order of 10 L−1, and mean water contents estimated between 0.012 and 0.031 g m−3. Mean cloud liquid water paths ranged from 25 to 100 g m−2. All results are compared to previous studies, and potential retrieval errors are discussed. Additionally, seasonal variation in macro- and microphysical properties was highlighted. Finally, fraction of liquid water to ice mass was shown to decrease with decreasing temperature.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Summary for policy makers.;Alley,2007

2. Annual cycle of radiation fluxes over the Arctic Ocean: Sensitivity to cloud optical properties.;Curry;J. Climate,1992

3. Overview of Arctic cloud and radiation characteristics.;Curry;J. Climate,1996

4. Preliminary comparison of CloudSAT-derived microphysical quantities with ground-based measurements for mixed-phase cloud research in the Arctic.;de Boer;J. Geophys. Res.,2008

5. Electromagnetic Scattering on Spherical Polydispersions.;Deirmendjian,1969

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3