RaFSIP: Parameterizing Ice Multiplication in Models Using a Machine Learning Approach

Author:

Georgakaki Paraskevi1ORCID,Nenes Athanasios12ORCID

Affiliation:

1. Laboratory of Atmospheric Processes and their Impacts (LAPI) School of Architecture, Civil & Environmental Engineering Ecole Polytechnique Fédérale de Lausanne Lausanne Switzerland

2. Center for Studies of Air Quality and Climate Change Institute of Chemical Engineering Sciences Foundation for Research and Technology Hellas Patras Greece

Abstract

AbstractAccurately representing mixed‐phase clouds (MPCs) in global climate models (GCMs) is critical for capturing climate sensitivity and Arctic amplification. Secondary ice production (SIP), can significantly increase ice crystal number concentration (ICNC) in MPCs, affecting cloud properties and processes. Here, we introduce a machine‐learning (ML) approach, called Random Forest SIP (RaFSIP), to parameterize SIP in stratiform MPCs. RaFSIP is trained on 16 grid points with 10‐km horizontal spacing derived from a 2‐year simulation with the Weather Research and Forecasting (WRF) model, including explicit SIP microphysics. Designed for a temperature range of 0 to −25°C, RaFSIP simplifies the description of rime splintering, ice‐ice collisional break‐up, and droplet‐shattering using only a limited set of inputs. RaFSIP was evaluated offline before being integrated into WRF, demonstrating its stable online performance in a 1‐year simulation keeping the same model setup as during training. Even when coupled with the 50‐km grid spacing domain of WRF, RaFSIP reproduces ICNC predictions within a factor of 3 when compared to simulations with explicit SIP microphysics. The coupled WRF‐RaFSIP scheme replicates regions of enhanced SIP and accurately maps ICNCs and liquid water content, particularly at temperatures above −10°C. Uncertainties in RaFSIP minimally impact surface cloud radiative forcing in the Arctic, resulting in radiative biases under 3 Wm−2 compared to simulations with detailed microphysics. Although the performance of RaFSIP in convective clouds remains untested, its adaptable nature allows for data set augmentation to address this aspect. This framework opens possibilities for GCM simplification and process description through physics‐guided ML algorithms.

Funder

European Research Council

Horizon 2020 Framework Programme

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

HORIZON EUROPE Excellent Science

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3