The Antarctic Ice Core Chronology 2023 (AICC2023) chronological framework and associated timescale for the European Project for Ice Coring in Antarctica (EPICA) Dome C ice core
-
Published:2023-11-10
Issue:11
Volume:19
Page:2257-2286
-
ISSN:1814-9332
-
Container-title:Climate of the Past
-
language:en
-
Short-container-title:Clim. Past
Author:
Bouchet MarieORCID, Landais Amaëlle, Grisart AntoineORCID, Parrenin FrédéricORCID, Prié Frédéric, Jacob Roxanne, Fourré EliseORCID, Capron EmilieORCID, Raynaud Dominique, Lipenkov Vladimir Ya, Loutre Marie-FranceORCID, Extier ThomasORCID, Svensson AndersORCID, Legrain Etienne, Martinerie PatriciaORCID, Leuenberger MarkusORCID, Jiang WeiORCID, Ritterbusch Florian, Lu Zheng-Tian, Yang Guo-Min
Abstract
Abstract. The EPICA (European Project for Ice Coring in Antarctica) Dome C (EDC) ice core drilling in East Antarctica reaches a depth of 3260 m. The reference EDC chronology, the AICC2012 (Antarctic Ice Core Chronology 2012), provides an age vs. depth relationship covering the last 800 kyr (thousands of years), with an absolute uncertainty rising up to 8000 years at the bottom of the ice core. The origins of this relatively large uncertainty are twofold: (1) the δ18Oatm, δO2/N2 and total air content (TAC) records are poorly resolved and show large gaps over the last 800 kyr, and (2) large uncertainties are associated with their orbital targets. Here, we present new highly resolved δ18Oatm, δO2/N2 and δ15N measurements for the EDC ice core covering the last five glacial–interglacial transitions; a new low-resolution TAC record over the period 440–800 ka BP (ka: 1000 years before 1950); and novel absolute 81Kr ages. We have compiled chronological and glaciological information including novel orbital age markers from new data on the EDC ice core as well as accurate firn modeling estimates in a Bayesian dating tool to construct the new AICC2023 chronology. For the first time, three orbital tools are used simultaneously. Hence, it is possible to observe that they are consistent with each other and with the other age markers over most of the last 800 kyr (70 %). This, in turn, gives us confidence in the new AICC2023 chronology. The average uncertainty in the ice chronology is reduced from 1700 to 900 years in AICC2023 over the last 800 kyr (1σ). The new timescale diverges from AICC2012 and suggests age shifts reaching 3800 years towards older ages over marine isotope stages (MISs) 5, 11 and 19. But the coherency between the new AICC2023 timescale and independent chronologies of other archives (Italian Lacustrine succession from Sulmona Basin, Dome Fuji ice core and northern Alpine speleothems) is improved by 1000 to 2000 years over these time intervals.
Funder
H2020 Excellent Science
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Global and Planetary Change
Reference111 articles.
1. Alley, R. B.: Firn densification by grain-boundary sliding: a first model, Journal de Physique Colloque, 48, 1–249, https://doi.org/10.1051/JPHYSCOL:1987135, 1987. 2. Andersen, K. K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., Chappellaz, J., Clausen, H. B., Dahl-Jensen, D., Fischer, H., Flückiger, J., Fritzsche, D., Fujii, Y., Goto-Azuma, K., Grønvold, K., Gundestrup, N. S., Hansson, M., Huber, C., Hvidberg, C. S., Johnsen, S. J., Jonsell, U., Jouzel, J., Kipfstuhl, S., Landais, A., Leuenberger, M., Lorrain, R., Masson-Delmotte, V., Miller, H., Motoyama, H., Narita, H., Popp, T., Rasmussen, S. O., Raynaud, D., Rothlisberger, R., Ruth, U., Samyn, D., Schwander, J., Shoji, H., Siggard-Andersen, M.-L., Steffensen, J. P., Stocker, T., Sveinbjörnsdóttir, A. E., Svensson, A., Takata, M., Tison, J.-L., Thorsteinsson, Th., Watanabe, O., Wilhelms, F., White, J. W. C., and N. G. I. C. P. members: High-resolution record of Northern Hemisphere climate extending into the last interglacial period, Nature, 431, 147–151, https://doi.org/10.1038/nature02805, 2004. 3. Andersen, K. K., Svensson, A., Johnsen, S. J., Rasmussen, S. O., Bigler, M., Röthlisberger, R., Ruth, U., Siggaard-Andersen, M.-L., Peder Steffensen, J., Dahl-Jensen, D., Vinther, B. M., and Clausen, H. B.: The Greenland Ice Core Chronology 2005, 15–42 ka. Part 1: constructing the time scale, Quaternary Sci. Rev., 25, 3246–3257, https://doi.org/10.1016/j.quascirev.2006.08.002, 2006. 4. Arnaud, L., Barnola, J. M., and Duval, P.: Physical modeling of the densification of snow/firn and ice in the upper part of polar ice sheets, Physics of Ice Core Records, 285–305, http://hdl.handle.net/2115/32472 (last access: 9 November 2023), 2000. 5. Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res.-Earth, 115, 3011, https://doi.org/10.1029/2009JF001306, 2010.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the relationship between δO2∕N2 variability and ice sheet surface conditions in Antarctica;The Cryosphere;2024-08-22 2. Greenland climate records from ice core isotopes;Reference Module in Earth Systems and Environmental Sciences;2024 3. Overview;Reference Module in Earth Systems and Environmental Sciences;2024 4. Ice Core Studies|10Be and cosmogenic radionuclides in ice cores;Reference Module in Earth Systems and Environmental Sciences;2024 5. N2, O2, and Ar in ice cores: Elemental and isotopic compositions;Reference Module in Earth Systems and Environmental Sciences;2023
|
|