On the relationship between δO2∕N2 variability and ice sheet surface conditions in Antarctica
-
Published:2024-08-22
Issue:8
Volume:18
Page:3741-3763
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Harris Stuart Romilly, Landais Amaëlle, Arnaud LaurentORCID, Buizert ChristoORCID, Capron EmilieORCID, Dumont MarieORCID, Libois QuentinORCID, Mulvaney RobertORCID, Orsi AnaïsORCID, Picard GhislainORCID, Prié Frédéric, Severinghaus JeffreyORCID, Stenni BarbaraORCID, Martinerie PatriciaORCID
Abstract
Abstract. While the processes controlling pore closure are broadly understood, the physical mechanisms driving the associated elemental fractionation remains ambiguous. Previous studies have shown that the pore closure process leads to a depletion in small-sized molecules (e.g. H2, O2, Ar, Ne, He) in ice core bubbles relative to larger-sized molecules like N2. This size-dependent fractionation, identified using ice core δ(O2/N2) records, exhibits a clear anti-correlation with local summer solstice insolation, making δ(O2/N2) a valuable ice core dating tool. Mechanisms controlling this relationship are attributed to the physical properties of deep firn. In this study, we compile δ(O2/N2) records from 15 polar ice cores and show a new additional link between δ(O2/N2) and local surface temperature and/or accumulation rate. Using the Crocus snowpack model, we perform sensitivity tests to identify the response of near-surface snow properties to changes in insolation intensity, accumulation rate, and air temperature. These tests support a mechanism linked to firn grain size, such that the larger the grain size for a given density, the stronger the pore closure fractionation and, hence, the lower the δ(O2/N2) values archived in the ice. Based on both snowpack model outputs and data compilation, our findings suggest that local accumulation rate and temperature should be considered when interpreting δ(O2/N2) as a local insolation proxy.
Funder
HORIZON EUROPE Marie Sklodowska-Curie Actions H2020 European Research Council
Publisher
Copernicus GmbH
Reference130 articles.
1. Albert, M., Shuman, C., Courville, Z., Bauer, R., Fahnestock, M., and Scambos, T.: Extreme firn metamorphism: impact of decades of vapor transport on near-surface firn at a low-accumulation glazed site on the East Antarctic plateau, Ann. Glaciol., 39, 73–78, https://doi.org/10.3189/172756404781814041, 2004. a 2. Alley, R. B. and Koci, B. R.: Ice-core analysis at site A, Greenland: preliminary results, Ann. Glaciol., 10, 1–4, https://doi.org/10.3189/S0260305500004067, 1988. a 3. Alley, R. B., Meese, D. A., Shuman, C. A., Gow, A. J., Taylor, K. C., Grootes, P. M., White, J. W. C., Ram, M., Waddington, E. D., Mayewski, P. A., and Zielinski, G. A.: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event, Nature, 362, 527–529, https://doi.org/10.1038/362527a0, 1993. a 4. Battle, M., Bender, M., Sowers, T., Tans, P., Butler, J., Elkins, J., Ellis, J., Conway, T., Zhang, N., Lang, P., and Clarket, A. D.: Atmospheric gas concentrations over the past century measured in air from firn at the South Pole, Nature, 383, 231–235, https://doi.org/10.1038/383231a0, 1996. a 5. Battle, M. O., Severinghaus, J. P., Sofen, E. D., Plotkin, D., Orsi, A. J., Aydin, M., Montzka, S. A., Sowers, T., and Tans, P. P.: Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide, Atmos. Chem. Phys., 11, 11007–11021, https://doi.org/10.5194/acp-11-11007-2011, 2011. a
|
|