Seasonal distribution of aerosol properties over Europe and their impact on UV irradiance

Author:

Chubarova N. Y.

Abstract

Abstract. Using the aerosol optical thickness at 550 nm (τ550) from MODIS (collection 5) for the 2000–2008 period combined with the aerosol products from the ground-based AERONET network since 1996, monthly mean values of key aerosol parameters have been obtained with 1 degree resolution over Europe. Additional tests have revealed a satisfactory quality of the MODIS data, except in a few cases. Quality assured AERONET data are used for evaluating the Angstrom exponent, single scattering albedo and asymmetry factor, and for validating the final aerosol optical thickness in the UV spectral region. A method for extrapolating the aerosol parameters into the UV spectral region is discussed. The aerosol optical thickness distributions are considered together with meteorological fields from NOAA_NCEP_CPC_CAMS_ OPI climatology. The τ340 is shown to vary significantly from approximately 0.01 to 0.9 depending on the season and location. Permanent elevated aerosol loading over several industrial areas is observed, which agrees with the output of chemical transport models. Using radiative transfer modeling, monthly mean UV loss due to aerosol was estimated. The absolute decrease in UV indices varies from less than 0.1 to 1.5. The relative UV attenuation has large spatial and temporal variations (−1%–−17%) with a minimum towards the northwest and maxima over several southern local areas (Northern Italy, etc.) during the warm period.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3