Columnar and surface urban aerosol in the Moscow megacity according to measurements and simulations with the COSMO-ART model

Author:

Chubarova Natalia E.ORCID,Vogel Heike,Androsova Elizaveta E.,Kirsanov Alexander A.,Popovicheva Olga B.,Vogel Bernhard,Rivin Gdaliy S.

Abstract

Abstract. Urban aerosol pollution was analyzed over the Moscow megacity region using the COSMO-ART (COSMO – COnsortium for Small-scale MOdelling, ART – Aerosols and Reactive Trace gases) online coupled mesoscale model system and intensive measurement campaigns at the Moscow State University Meteorological Observatory (MSU MO, 55.707∘ N, 37.522∘ E) during the April–May period in 2018 and 2019. We analyzed mass concentrations of particulate matter with diameters smaller than 10 µm (PM10), black carbon (BC) and aerosol gas precursors (NOx, SO2, CHx) as well as columnar aerosol parameters for fine and coarse modes together with different meteorological parameters, including an index characterizing the intensity of particle dispersion (IPD). Both model and experimental datasets have shown a statistically significant linear correlation of BC with NO2 and PM10 mass concentrations, which indicates mostly common sources of emissions of these substances. There was a pronounced increase in the BC/PM10 ratio from 0.7 % to 5.9 %, with the decrease in the IPD index related to the amplification of the atmospheric stratification. We also found an inverse dependence between the BC/PM10 ratio and columnar single-scattering albedo (SSA) for the intense air mixing conditions. This dependence together with the obtained negative correlation between wind speed and BC/PM10 may serve as an indicator of changes in the absorbing properties of the atmosphere due to meteorological factors. On average, the relatively low BC / PM10 ratio (for urban regions) of 4.7 % is the cause of the observed relatively high SSA = 0.94 in Moscow. Using long-term parallel aerosol optical depth (AOD) measurements over the 2006–2020 period at the MSU MO and under upwind clean background conditions at Zvenigorod Scientific Station (ZSS) of the IAP RAS (55.7∘ N, 36.8∘ E), we estimated the urban component of AOD (AODurb) and some other parameters as the differences at these sites. The annual mean AODurb at 550 nm was about 0.021 with more than 85 % of the fine aerosol mode. The comparisons between AODurb obtained from the model and measurements during this experiment have revealed a similar level of aerosol pollution of about AODurb=0.015–0.019, which comprised 15 %–19 % of the total AOD at 550 nm. The urban component of PM10 (PM10urb) was about 16 µg m−3 according to the measurements and 6 µg m−3 according to the COSMO-ART simulations. We obtained a pronounced diurnal cycle of PM10urb and urban BC (BCurb) as well as their strong correlation with the IPDs. With the IPD index change from 3 to 1 at night, there was about a 4 times increase in PM10urb (up to 30–40 µg m−3) and a 3 times increase in BCurb (up to 3–3.5 µg m−3). At the same time, no pronounced daily cycle was found for the columnar urban aerosol component (AODurb), although there was a slight increase in model AODurb at night.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference117 articles.

1. AERONET: https://aeronet.gsfc.nasa.gov/, last access: 28 January 2022.

2. ACTRIS: https://actris.nilu.no, last access: 28 January 2022.

3. AEROCOM: https://aerocom.met.no/, last access: 28 January 2022.

4. Air quality in Europe: 2020 report, EEA Report No 09/2020, Luxembourg, Publications Office of the European Union, 164 pp., ISSN 1977-8449, 2020.

5. Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., and Hopke, P. K.: Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2, Atmos. Environ., 43, 2770–2780, https://doi.org/10.1016/j.atmosenv.2009.02.039, 2009.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3