Tropospheric and stratospheric NO retrieved from ground-based Fourier-transform infrared (FTIR) measurements
-
Published:2021-09-28
Issue:9
Volume:14
Page:6233-6247
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Zhou MinqiangORCID, Langerock Bavo, Vigouroux Corinne, Dils Bart, Hermans Christian, Kumps Nicolas, Nan Weidong, Metzger Jean-Marc, Mahieu EmmanuelORCID, Wang Ting, Wang Pucai, De Mazière Martine
Abstract
Abstract. Nitric oxide (NO) is a key active trace gas in the atmosphere, which contributes to form harmful ozone in the troposphere and to the destruction of ozone in the stratosphere. In this study, we present the NO retrieval from ground-based Fourier-transform infrared (FTIR) solar absorption spectrometry measurements at a polluted site (Xianghe, China) and a background site (Maïdo, Reunion Island). The degree of freedom (DOF) of the NO retrieval is 2.3±0.4 (1σ) at Xianghe and 1.3±0.1 at Maïdo. By looking at the FTIR NO retrievals at Xianghe and Maïdo, we find that the stratospheric NO partial column is large in summer as compared to winter at both sites, and the seasonal variation in the FTIR stratospheric NO partial columns is consistent with that observed by the co-located Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite measurements. A large diurnal variation in the stratospheric NO partial column is observed by the FTIR measurements at Maïdo, with an increase from the early morning to about 14:00 local time and a decrease thereafter. Due to the low NO concentration near the surface, the FTIR NO retrieval is only sensitive to the stratosphere at Maïdo. The high NO mole fraction near the surface at Xianghe allows us to derive tropospheric and stratospheric NO partial columns separately, although the tropospheric column is very difficult to retrieve in summer (June–August) because of the high water vapor abundance. A good correlation is found between the NO observed by the FTIR measurements and other air pollutants (NO2 and CO) in the troposphere at Xianghe. It is the first study of a successful analysis of NO in the troposphere from a ground-based FTIR site. The tropospheric and stratospheric NO retrieval might be possible at other potential FTIR sites inside or near large cities with enhanced levels of NO near the surface.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference44 articles.
1. Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., van Gent, J., Eskes, H., Levelt, P. F., van der A, R., Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations, Geophys. Res. Lett., 47, e2020GL087 978, https://doi.org/10.1029/2020GL087978, 2020. a 2. Bermejo-Pantaleón, D., Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Linden, A., Grabowski, U., Höpfner, M., Kiefer, M., Glatthor, N., Kellmann, S., and Lu, G.: Global observations of thermospheric temperature and nitric oxide from MIPAS spectra at 5.3 µm, J. Geophys. Res.-Space, 116, A10313, https://doi.org/10.1029/2011JA016752, 2011. a 3. Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, M., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P. F., Colin, R., DeCola, P., DeMazière, M., Drummond, J. R., Dufour, D., Evans, W. F. J., Fast, H., Fussen, D., Gilbert, K., Jennings, D. E., Llewellyn, E. J., Lowe, R. P., Mahieu, E., McConnell, J. C., McHugh, M., McLeod, S. D., Michaud, R., Midwinter, C., Nassar, R., Nichitiu, F., Nowlan, C., Rinsland, C. P., Rochon, Y. J., Rowlands, N., Semeniuk, K., Simon, P., Skelton, R., Sloan, J. J., Soucy, M. A., Strong, K., Tremblay, P., Turnbull, D., Walker, K. A., Walkty, I., Wardle, D. A., Wehrle, V., Zander, R., and Zou, J.: Atmospheric chemistry experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005. a 4. Blumenstock, T., Hase, F., Keens, A., Czurlok, D., Colebatch, O., Garcia, O., Griffith, D. W. T., Grutter, M., Hannigan, J. W., Heikkinen, P., Jeseck, P., Jones, N., Kivi, R., Lutsch, E., Makarova, M., Imhasin, H. K., Mellqvist, J., Morino, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Raffalski, U., Rettinger, M., Robinson, J., Schneider, M., Servais, C., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., and Velazco, V. A.: Characterization and potential for reducing optical resonances in Fourier transform infrared spectrometers of the Network for the Detection of Atmospheric Composition Change (NDACC), Atmos. Meas. Tech., 14, 1239–1252, https://doi.org/10.5194/amt-14-1239-2021, 2021. a 5. Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., van Aardenne, J. A., Monni, S., Doering, U., Olivier, J. G. J., Pagliari, V., and Janssens-Maenhout, G.: Gridded emissions of air pollutants for the period 1970–2012 within EDGAR v4.3.2, Earth Syst. Sci. Data, 10, 1987–2013, https://doi.org/10.5194/essd-10-1987-2018, 2018. a, b
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|